节点文献

分数阶非线性变时滞脉冲微分系统的有限时间稳定性

Finite-time Stability of Fractional-order Nonlinear Impulsive Differential System with Time-varying Delay

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 吴桐张志信蒋威

【Author】 WU Tong;ZHANG Zhixin;JIANG Wei;School of Mathematical Sciences, Anhui University;

【通讯作者】 张志信;

【机构】 安徽大学数学科学学院

【摘要】 论文研究了一类具有Caputo导数的分数阶非线性变时滞脉冲微分系统的有限时间稳定性问题,利用系统解的结构和广义的Gronwall不等式给出了具有时变时滞的分数阶非线性脉冲微分系统在有限时间区间上稳定的充分性条件,推广了现有结论,同时给出了具体的数值算例以验证定理条件的有效性。

【Abstract】 In this paper, the finite-time stability problem of a class of Caputo fractional-order nonlinear impulsive differential system with time-varying delay is studied. By using the structure of the solution for the system and the generalized Gronwall inequality, the sufficient conditions for the fractional-order nonlinear impulsive differential system with time-varying delay to be stable over a finite time interval are obtained, and the results extend the existing conclusions. Finally, a numerical example is given to verify the validity of the theorem conditions.

【基金】 国家自然科学基金(11371027,11471015,11601003);安徽省自然科学基金(1608085MA12);高等学校博士点专项科研资助基金(20123401120001)
  • 【文献出处】 安庆师范大学学报(自然科学版) ,Journal of Anqing Normal University(Natural Science Edition) , 编辑部邮箱 ,2020年01期
  • 【分类号】O175
  • 【下载频次】85
节点文献中: 

本文链接的文献网络图示:

本文的引文网络