节点文献

神经网络在自由曲线插补中的应用研究

Research on the Application of Neural Network in Free Curve Interpolation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邬再新李华兵

【Author】 WU Zai-xin;LI Hua-bing;Institute of Mechanical and Electrical Engineering,Lanzhou University of Technology;

【机构】 兰州理工大学机电工程学院

【摘要】 针对NURBS曲线插补中求导误差大、计算复杂等问题,提出了采用RBF神经网络对自由曲线进行插补的方法;并以弓高误差为约束条件,建立一个进给步长可变的神经网络数控插补模型。另外根据曲线曲率的变化规律找出插补过程中的速度敏感点,在到达该速度敏感点之前将速度降低到指定值,从而进行有效的速度规划。最后在MATLAB平台上进行仿真实验,结果表明,该模型结构简单、计算量小、插补精度高,能够在保证加工效率和加工质量的同时降低柔性冲击。

【Abstract】 In order to solve the problem of large error derivation and complex calculation in NURBS curve interpolation,the method of interpolating free curves by using RBF neural network is proposed. And a neural network numerical control interpolation model with variable feed step is established by using the bow height error as the constraint condition. In addition,the velocity sensitive point in the interpolation process is found out according to the change law of curvilinear curvature,and the speed is reduced to the specified value before reaching the speed sensitive point,thus the effective speed planning is carried out. Finally,the simulation experiment on the MATLAB platform shows that the model has the advantages of simple structure,small calculation and high interpolation precision accuracy,which can reduce the flexible impact while ensuring the processing efficiency and quality.

  • 【文献出处】 组合机床与自动化加工技术 ,Modular Machine Tool & Automatic Manufacturing Technique , 编辑部邮箱 ,2019年02期
  • 【分类号】TG659;TP183
  • 【被引频次】5
  • 【下载频次】132
节点文献中: 

本文链接的文献网络图示:

本文的引文网络