节点文献

Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘佳张英华白智明黄志安高玉坤

【Author】 Jia Liu;Ying-Hua Zhang;Zhi-Ming Bai;Zhi-An Huang;Yu-Kun Gao;School of Civil and Resource Engineering, University of Science and Technology Beijing;

【通讯作者】 白智明;

【机构】 School of Civil and Resource Engineering, University of Science and Technology Beijing

【摘要】 ZnO/graphene/polyaniline(PANI) composite is synthesized and used for photoelectrocatalytic oxidation of methane under simulated sun light illumination with ambient conditions. The photoelectrochemical(PEC) performance of pure ZnO, ZnO/graphene, ZnO/PANI, and ZnO/graphene/PANI photoanodes is investigated by cyclic voltammetry(CV),chronoamerometry(J–t) and electrochemical impedance spectroscopy(EIS). The yields of methane oxidation products,mainly methanol(CH3OH) and formic acid(HCOOH), catalysed by the synthesized ZnO/graphene/PANI composite are 2.76 and 3.20 times those of pure ZnO, respectively. The mechanism of the photoelectrocatalytic process converting methane into methanol and formic acid is proposed on the basis of the experimental results. The enhanced photoelectrocatalytic activity of the ZnO/graphene/PANI composite can be attributed to the fact that graphene can efficiently transfer photo-generated electrons from the inner region to the surface reaction to form free radicals due to its superior electrical conductivity as an inter-media layer. Meanwhile, the introduction of PANI promotes solar energy harvesting by extending the visible light absorption and enhances charge separation efficiency due to its conducting polymer characteristics.In addition, the PANI can create a favorable π-conjunction structure together with graphene layers, which can achieve a more effective charge separation. This research demonstrates that the fabricated ZnO/graphene/PANI composite promises to implement the visible-light photoelectrocatalytic methane oxidation.

【Abstract】 ZnO/graphene/polyaniline(PANI) composite is synthesized and used for photoelectrocatalytic oxidation of methane under simulated sun light illumination with ambient conditions. The photoelectrochemical(PEC) performance of pure ZnO, ZnO/graphene, ZnO/PANI, and ZnO/graphene/PANI photoanodes is investigated by cyclic voltammetry(CV),chronoamerometry(J–t) and electrochemical impedance spectroscopy(EIS). The yields of methane oxidation products,mainly methanol(CH3OH) and formic acid(HCOOH), catalysed by the synthesized ZnO/graphene/PANI composite are 2.76 and 3.20 times those of pure ZnO, respectively. The mechanism of the photoelectrocatalytic process converting methane into methanol and formic acid is proposed on the basis of the experimental results. The enhanced photoelectrocatalytic activity of the ZnO/graphene/PANI composite can be attributed to the fact that graphene can efficiently transfer photo-generated electrons from the inner region to the surface reaction to form free radicals due to its superior electrical conductivity as an inter-media layer. Meanwhile, the introduction of PANI promotes solar energy harvesting by extending the visible light absorption and enhances charge separation efficiency due to its conducting polymer characteristics.In addition, the PANI can create a favorable π-conjunction structure together with graphene layers, which can achieve a more effective charge separation. This research demonstrates that the fabricated ZnO/graphene/PANI composite promises to implement the visible-light photoelectrocatalytic methane oxidation.

【基金】 Project supported by the National Natural Science Foundation of China(Grant Nos.51602021 and 51474017);the Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-15-107A1)
  • 【文献出处】 Chinese Physics B ,中国物理B , 编辑部邮箱 ,2019年04期
  • 【分类号】TQ223.121;TQ225.121
  • 【被引频次】3
  • 【下载频次】55
节点文献中: 

本文链接的文献网络图示:

本文的引文网络