节点文献

超声人工智能用于乳腺结节良恶性诊断的研究

Ultrasound Artificial Intelligence For the Diagnosis of Benign and Malignant Breast Nodules

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李程花瞻林江莉赵玉珍臧树良武敬平李艳王丹

【Author】 Li Cheng;Hua Zhan;Lin Jiangli;Zhao Yuzhen;Zang Shuliang;Wu Jingping;Li Yan;Wang Dan;Department of Ultrasound Diagnosis,China-Japan Friendship Hospital;Department of Nuclear Medicine,Xiyuan Hospital;College of Basic Medicine,Beijing University of Chinese Medicine;School of Materials Science and Engineering,Sichuan University;

【通讯作者】 王丹;

【机构】 中日友好医院超声诊断科中日友好医院普外科四川大学材料科学与工程学院西苑医院核医学科北京中医药大学基础医学院

【摘要】 目的评价乳腺超声人工智能设备,对乳腺结节良恶性的诊断价值。方法采集具有明确病理学诊断结果的乳腺结节超声图像400张,其中乳腺良性结节200张,乳腺恶性结节200张,运用超声人工智能对400张超声图像进行诊断,并对诊断结果进行统计分析。结果乳腺超声人工智能的灵敏度为96.06%、特异度为97.46%,具有良好的真实性,与病理结果一致性程度极好,Kappa值为0.94,具有极好的可靠性。结论超声人工智能有利于避免超声诊断存在的主观性缺陷,一定程度上实现了超声诊断的量化及标准化,值得临床推广。

【Abstract】 Objective The authors of this article have led the development of breast ultrasound artificial intelligence equipment,this article is aimed at studying the diagnostic value of breast and nodules.Methods 400 ultrasound images of breast nodules with clear pathological diagnosis were collected,including 200 benign nodules of the breast and 200 malignant nodules of the breast.Ultrasound artificial intelligence was used to diagnose 400 ultrasound images,and the diagnosis results were statistically analyzed.Results The sensitivity of breast ultrasound artificial intelligence is as high as 96.06%,the specificity is 97.46%,It has good authenticity and excellent consistency with pathological results.The Kappa value is 0.94,which has excellent reliability.Conclusions Ultrasonic artificial intelligence has a high accuracy rate for the diagnosis of benign and malignant breast nodules,which is conducive to avoiding the subjective defects of ultrasound diagnosis.To some extent,it has realized the quantification and standardization of ultrasound diagnosis,which is worthy of clinical promotion.

  • 【文献出处】 中国超声医学杂志 ,Chinese Journal of Ultrasound in Medicine , 编辑部邮箱 ,2019年09期
  • 【分类号】R445.1;R737.9
  • 【被引频次】17
  • 【下载频次】1049
节点文献中: 

本文链接的文献网络图示:

本文的引文网络