节点文献

基于机器学习的针灸相关疾病、基因、药物新关联挖掘

Machine learning-based mining of new associations in acupuncture-related diseases,genes and drugs

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 魏星谢静蒋秀林叶枫张德成陈友春朱文婕

【Author】 WEI Xing;XIE Jing;JIANG Xiu-lin;YE Feng;ZHANG De-cheng;CHEN You-chun;ZHU Wen-jie;Bengbu Medical College Public Basic Courses School;

【机构】 蚌埠医学院公共基础课学院

【摘要】 目的:挖掘针灸相关疾病、基因和药物间的新关联。方法:提出一种基于SVM的机器学习算法,结合词典识别疾病、基因和药物实体并挖掘三者之间的关联,构建针灸相关疾病、基因和药物关联网络。结果:识别出针灸相关的296种疾病、51种基因和278种药物,并在27种疾病、13种基因和135种药物之间挖掘出704种关联,构建3个关联网络,发现了262种新关联。结论:针灸相关疾病-基因-药物之间存在大量程度不一的关联,为针灸精准医疗提供了新的研究思路。

【Abstract】 Objective To mine the new associations in acupuncture-related diseases,genes and drugs. Methods A support vector machine( SVM)-based machine learning algorithm was proposed and different association networks for acupuncture-related diseases,genes and drugs were established by identifying the diseases,genes and drugs with dictionaries and mining their associations. Results A total of 296 acupuncture-related diseases,51 genes and278 drugs were identified,and 704 associations were mined in 27 diseases,13 genes and 135 drugs. Three association networks were established,which discovered a total of 262 new associations in acupuncture-related diseases,genes and drugs. Conclusion New associations are detected in acupuncture-related diseases,genes and drugs,which can thus provide certain new ideas for studying the precision treatment of diseases by acupuncture.

【关键词】 针灸疾病基因药物SVM关联网络数据挖掘文本挖掘
【Key words】 AcupunctureDiseaseGeneDrugSVMAssociation networkData miningText mining
【基金】 安徽高校自然科学重点研究项目“疾病-基因-药物关系抽取关键技术与实证研究”(数字医学与智慧健康安徽省重点实验室KJ2019A0325);安徽省质量工程项目“计算机与程序设计”(2018mooc281);蚌埠医学院自然科学重点项目“基于词典和机器学习的基因实体识别机制研究”(BYKY1825ZD)
  • 【文献出处】 中华医学图书情报杂志 ,Chinese Journal of Medical Library and Information Science , 编辑部邮箱 ,2019年08期
  • 【分类号】R245;G254
  • 【被引频次】3
  • 【下载频次】294
节点文献中: 

本文链接的文献网络图示:

本文的引文网络