节点文献

融合用户经历的多策略自适应推荐模型

User Experience Based Adaptive Recommendation Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 原福永冯凯东李晨雷瑜周馨黄国言梁顺攀

【Author】 YUAN Fu-yong;FENG Kai-dong;LI Chen;LEI Yu;ZHOU Xin;HUANG Guo-yan;LIANG Shun-pan;Department of Computer,College of Information Science and Engineering,Yanshan University;Software College,Northeastern University;

【机构】 燕山大学信息科学与工程学院计算机系东北大学软件学院

【摘要】 根据用户的历史行为信息向用户推荐符合其偏好的商品列表是推荐系统的基本方法之一,用户的行为信息可能是显式的(如电子商务网站中的商品评分),也可能是隐式的(如点击商品详情信息或收藏商品).但在实际场景中,用户隐式行为数量往往多于显式行为数量.为了得到更为准确的推荐结果,本文引入用户经历来定义用户在系统中隐式反馈的累积数量,提出了一种利用用户经历作为平衡系数来平衡多种策略的自适应推荐模型(User Experience based adaptive Recommendation Model,UERM),然后通过引入阻尼系数对模型进行进一步优化,提出了融入阻尼系数的融合用户经历的自适应推荐模型(UERM+).最后在两个真实数据集上进行实验,证明本文模型能够有效地提高推荐精度.

【Abstract】 It is one of the basic methods of recommending a system to recommend a product list according to the user’s historical behavior information according to the user’ s historical behavior information. The user’ s behavior information may be explicit( such as product rating in an e-commerce w ebsite),or may be implicit.( such as clicking on a product listing or a favorite item). How ever,in actual scenarios,the number of implicit behaviors of users is often more than the number of explicit behaviors. In order to get more accurate recommendation results,this paper introduces user experience to define the cumulative amount of implicit feedback of users in the system,and proposes an adaptive recommendation model that uses user experience as a balance factor to balance multiple strategie.The Adaptive Recommendation M odel( UERM) is then further optimized by introducing the damping coefficient. A user-based adaptive recommendation algorithm( UERM +) incorporating the damping coefficient is proposed. Finally,experiments on tw o real data sets prove that the model can effectively improve the recommendation accuracy.

【基金】 国家自然科学基金项目(61772451)资助;河北省自然科学青年基金项目(E2015203135)资助
  • 【文献出处】 小型微型计算机系统 ,Journal of Chinese Computer Systems , 编辑部邮箱 ,2019年07期
  • 【分类号】TP391.3
  • 【被引频次】5
  • 【下载频次】154
节点文献中: 

本文链接的文献网络图示:

本文的引文网络