节点文献

一种基于FCM的噪声图像分割算法研究

Research on A Noise Image Segmentation Algorithm Based on FCM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 周宁亚王家成

【Author】 ZHOU Ningya;WANG Jiacheng;School of Electrical and Information Engineering, Anhui University of Science and Technology;School of Physics and Electronic Engineering, Fuyang Normal University;

【机构】 安徽理工大学电气与信息工程学院阜阳师范学院物理与电子工程学院

【摘要】 针对噪声污染的图像进行有效分割困难问题,提出了一种基于模糊C均值的噪声图像分割方法.该方法首先应用离散小波变换(DWT)将图像进行分解获取不同尺度的小波系数;然后利用粒子群(PSO)算法自适应搜索最优的阈值对小波系数进行处理,将处理好的系数利用小波重构得到重构图像;最后利用模糊C均值聚类完成图像分割.该算法在Berkeley数据集上进行实验,结果表明与其他算法相比,该算法具有更好的性能.

【Abstract】 Aiming at the problem of effective segmentation of noise-contaminated images, a fuzzy image segmentation method based on fuzzy C-means is proposed. Firstly, the discrete wavelet transform(DWT) is used to decompose the image to obtain wavelet coefficients of different scales. Then the particle swarm optimization(PSO)algorithm is used to adaptively search the optimal threshold to process the wavelet coefficients, and the processed coefficients are processed by wavelet. The reconstructed image is obtained. Finally, the image segmentation is completed by fuzzy C-means clustering. The algorithm is tested on the Berkeley dataset. The experimental results show that the proposed algorithm has better performance than other algorithms.

【基金】 国家自然科学基金项目(61772033)
  • 【文献出处】 新疆大学学报(自然科学版) ,Journal of Xinjiang University(Natural Science Edition) , 编辑部邮箱 ,2019年04期
  • 【分类号】TP391.41
  • 【被引频次】3
  • 【下载频次】162
节点文献中: 

本文链接的文献网络图示:

本文的引文网络