节点文献
非线性复差分方程亚纯解的振荡性质
The Oscillating Property of the Meromorphic Solution of Nonlinear Difference Equations
【摘要】 该文主要研究以下两类非线性复差分方程an(z)f(z+n)jn+…+a1(z)f(z+1)j1+a0(z)f(z)j0=b(z),an(z)f(qnz)jn+…+a1(z)f(qz)j1+a0(z)f(z)j0=b(z),其中,ai(z)(i=0,1,…,n)与b(z)为非零有理函数,ji(i=0,1,…,n)为正整数,q为非零复常数.当上述方程的亚纯解的超级小于1并且极点较少时,对解的零点分布进行了估计.此外,当亚纯解具有无穷多个极点时,也对极点收敛指数给出下界.
【Abstract】 In this paper, we discuss the following difference equations an(z)f(z+n)jn+…+a1(z)f(z+1)j1+a0(z)f(z)j0 = b(z)an(z)f(qnz)jn+…+a1(z)f(qz)j1+a0(z)f(z)j0 =b(z),where ai(z)(i= 0,1,…, n) and b(z) are nonzero rational functions,ji(i = 0,1,…, n) are positive integers, q is a nonzero complex constant. When the equations above have meromorphic solutions with hyper order less than 1 and few poles, we investigate the distributions of zeros.Besides, when the solution has infinitely many poles, we give the lower bound of the exponent of convergence of poles.
【Key words】 Nonlinear difference equation; Meromorphic solution; Poles; Zeros; Deficiency;
- 【文献出处】 数学物理学报 ,Acta Mathematica Scientia , 编辑部邮箱 ,2019年01期
- 【分类号】O174.52
- 【下载频次】37