节点文献

基于分类器链的多示例多标记算法

Multi-instance multi-label algorithm based on classifier chain

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李村合田程程董玉坤

【Author】 LI Cun-he;TIAN Cheng-cheng;DONG Yu-kun;College of Computer and Communication Engineering,China University of Petroleum (East China);

【机构】 中国石油大学(华东)计算机与通信工程学院

【摘要】 退化方法是求解多示例多标记学习(MIML)问题常用的求解方式,但是在退化过程中会造成标记之间的关联信息丢失。对该问题进行研究,提出OCC-MIMLSVM+分类算法,将MIMLSVM+算法与有序分类器链(OCC)方法相结合,通过对分类器进行合理组织,将标记之间的关联信息融入至算法的训练过程中,解决信息丢失问题,提高分类准确率。实验结果表明,改进算法取得了比基准多示例多标记算法更好的分类效果。

【Abstract】 Degradation is a common solution to the problem of the MIML classification problem.However,the correlation information among labels may lost in the degradation process.Based on these problems,the OCC-MIMLSVM+algorithm was proposed.The MIMLSVM+algorithm was combined with the ordered classifier chain(OCC)method,the classifier was organized and the dependency relation between labels was integrated into the training process of the algorithm,so that the problem of information lost was solved,and the accuracy of classification was improved.Experimental results show that the improved algorithm achieves better classification results than the benchmark multi-instance multi-label algorithm.

【基金】 山东省自然科学基金项目(ZR2014FQ018);山东省优秀中青年科学家科研奖励基金项目(BS2015DX017)
  • 【文献出处】 计算机工程与设计 ,Computer Engineering and Design , 编辑部邮箱 ,2019年06期
  • 【分类号】TP181;TP391.1
  • 【被引频次】2
  • 【下载频次】115
节点文献中: 

本文链接的文献网络图示:

本文的引文网络