节点文献

基于随机森林的阵发性房颤自动检测算法

Automatic detection algorithm of paroxysmal atrial fibrillation based on random forest

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 雷耀艾戈韬颜文婧李鸣

【Author】 LEI Yao;AI Getao;YAN Wenjing;LI Ming;School of mechanical and electrical Engineering,Nanchang University;Maintenance branch of JiangXi electric power co.,LTD.;School of Computer and Information Engineering,Beijing Technology and Business University;School of Instrument Science and Engineering,Nanchang University;

【通讯作者】 李鸣;

【机构】 南昌大学机电工程学院国网江西省电力有限公司检修分公司北京工商大学计算机与信息工程学院南昌大学信息工程学院

【摘要】 为了解决在阵发性房颤中持续时长较短的房颤检测问题,本文提出了一种基于随机森林的阵发性房颤自动检测算法。该算法主要是利用了在房颤发生时期心电图的RR间期绝对不规则这一特点,并采用了一种滑动窗口模式,分别从时域、频域和非线性分析3个方面进行特征提取,最后通过随机森林进行房颤检测,并将检测结果与数据实际标注对比。数据采用的是MIT-BIH房颤数据库,其最终敏感性(Se)、特异性(Sp)和阳性检测率(+P)分别为99.12%、98.86%、98.46%,实验结果证明了该算法的有效性。

【Abstract】 In order to solve the problem of short duration detection in paroxysmal atrial fibrillation,an automatic detection method was proposed based on random forest in this paper.This algorithm mainly used the absolute irregular of electrocardiogram in the periods between the RR and adopted a sliding window model.The features were extracted from the time domain,the frequency domain and the nonlinear analysis.Finally,atrial fibrillation was detected by random forest,and the results were compared with the actual data marking.The data was from the MIT-BIH database,where the sensitivity,specificity and positive detection rates were 99.12%,98.86% and 98.46%,respectively.The experimental results showed the effectiveness of the proposed algorithm.

【关键词】 房颤随机森林RR间期
【Key words】 Atrial fibrillationRandom forestRR interval
【基金】 江西省教育厅科学技术研究项目(GJJ160212);江西省科技厅重点研发计划(20161BBE50084);北京工商大学青年教师科研能力提升计划资助项目(PXM2019_014213_000007)
  • 【文献出处】 南昌大学学报(理科版) ,Journal of Nanchang University(Natural Science) , 编辑部邮箱 ,2019年04期
  • 【分类号】R541.75;TP18
  • 【被引频次】5
  • 【下载频次】104
节点文献中: 

本文链接的文献网络图示:

本文的引文网络