节点文献

基于径向基神经网络的刀具寿命预测模型研究

Research on Tool Life Prediction Model Based on Radial Basis Function Neural Networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 徐营利王展胡晓兵张波刘志明

【Author】 XU Yingli;WANG Zhan;HU Xiaobing;ZHANG Bo;LIU Zhiming;School of Manufacturing Science and Engineering, Sichuan University;CEC JinJiang Info Industrial Co., Ltd.,Chengdu;

【机构】 四川大学制造科学与工程学院成都中电锦江信息产业有限公司

【摘要】 通过分析总结影响刀具寿命的主要影响因素,建立铣削刀具加工参数与刀具寿命的径向基神经网络模型。训练模型使用了10组样本数据,以刀具直径、铣削速度、铣削宽度、铣削深度、进给量、刀具齿数作为网络输入参数,采用十折交叉验证方法对所构建模型进行验证,能够对刀具寿命进行较为准确的预测。与传统BP神经网络模型比较发现,径向基神经网络具有更好的预测精度和稳定性,是预测刀具寿命的一条有效途径。

【Abstract】 By analyzing and summarizing the main influencing factors of tool life, a radial basis neural network model for machining parameters and life of milling tools is established. The training model uses 10 sets of sample data. The tool diameter, milling speed, milling width, milling depth, feed and tool teeth number are used as network input parameters. The ten-fold cross validation method is used to validate the model and the tool life can be accurately predicted. Compared with the traditional BP neural network model, the RBF neural network has better prediction accuracy and stability, and is an effective approach to tool life prediction.

【基金】 2017年智能制造综合标准化与新模式应用(2017ZZ001);四川省科技支撑计划(2017GZ0064、2017GZ0066)
  • 【分类号】TG71;TP183
  • 【被引频次】7
  • 【下载频次】396
节点文献中: 

本文链接的文献网络图示:

本文的引文网络