节点文献
一类单叶调和函数的拟共形性质
On Quasiconformal Properties for One Set of Univalent Harmonic Mappings
【摘要】 研究单位圆盘D={z‖z|<1}上满足Re{αz[h″(z)+g″(z)]+h′(z)+g′(z)}>0,z∈D,α>0的单叶调和函数■的拟共形性质,对复伸张■的模给出最好的最小上界估计,进而给出该类函数到D的余集D~c上的拟共形延拓,并对其复伸张的模给出最好的最小上界估计,改进和推广了2004年Yalcin S等的研究成果.
【Abstract】 We study the quasiconformal properties of the univalent harmonic functions ■ on the unit disk D={z‖z|<1} with Re{αz[h″(z)+g″(z)]+h′(z)+g′(z)}>0, z∈D, α>0, and obtain the best upper bound estimation for the module of the dilatation function ■. Moreover, we construct their harmonic quasiconformal extension functions to the domain D~c of D, and give the best upper bound estimation for the module of their dilatation functions. The results improve and generalize the ones made by Yalcin S, et al in 2004.
【关键词】 单叶调和函数;
拟共形映照;
复特征模估计;
调和拟共形延拓;
【Key words】 univalent harmonic function; quasiconformal mapping; module estimate of complex dilatation; harmonic quasiconformal extension;
【Key words】 univalent harmonic function; quasiconformal mapping; module estimate of complex dilatation; harmonic quasiconformal extension;
【基金】 华侨大学中青年教师科技创新资助项目(600005-Z16J063)
- 【文献出处】 华侨大学学报(自然科学版) ,Journal of Huaqiao University(Natural Science) , 编辑部邮箱 ,2019年06期
- 【分类号】O174.51
- 【被引频次】1
- 【下载频次】50