节点文献

基于WOA-LSSVM的锅炉NO_x排放量预测模型

Prediction Model of Boiler NO_x Emission Based on WOA-LSSVM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘怀远甄成刚

【Author】 LIU Huaiyuan;ZHEN Chenggang;School of Control and Computer Engineering, North China Electric Power University;

【机构】 华北电力大学控制与计算机工程学院

【摘要】 精准可靠地预测锅炉NO_x排放量对电站锅炉低氮运行有着重要意义,为了提升模型的预测效果,提出一种基于鲸鱼优化算法-最小二乘支持向量机(WOA-LSSVM)的锅炉NO_x排放量预测建模方法。首先归一化处理初始样本数据,然后通过WOA算法对LSSVM中的核函数宽度和惩罚因子两个参数进行寻优求解,建立WOA-LSSVM黑箱模型,最终得到模型输出,同时将采用果蝇优化算法(FOA)、粒子群优化算法(PSO)优化参数建立的LSSVM预测模型和单一LSSVM预测模型作为对比研究。仿真结果表明,采用WOA优化的LSSVM模型在NO_x排放量预测方面明显优于其他选定模型,具有稳定且较高精度的仿真性能。

【Abstract】 Given the significance of accurate and reliable prediction of boiler NO_x emission to low-nitrogen operation of power plant boilers, this paper proposed a predictive modeling methods of NO_x emission based on the whale optimization algorithm-least squares support vector machine(WOA-LSSVM). The first step was to normalize the initial sample data. Then this paper built a WOA-LSSVM black box model and obtained the model output by optimizing the kernel function width and penalty factor in LSSVM by WOA algorithm. At the same time, this paper adopted fruit fly optimization algorithm(FOA) and particle swarm optimization algorithm(PSO) in optimizing parameter to establish LSSVM prediction model. And this paper compared the improved LSSVM prediction model with single LSSVM prediction model. The simulation results showed that the WOS-optimized LSSVM model is superior to other selected models in NO_x emission prediction, and that it features stable and high-precision simulation performance.

【基金】 中央高校基本科研业务费专项资金资助(2016MS143,2018ZD05);北京市自然科学基金资助项目(4182061)
  • 【文献出处】 华北电力大学学报(自然科学版) ,Journal of North China Electric Power University(Natural Science Edition) , 编辑部邮箱 ,2019年04期
  • 【分类号】X773;TP18
  • 【被引频次】13
  • 【下载频次】336
节点文献中: 

本文链接的文献网络图示:

本文的引文网络