节点文献
软黏土弹性模量衰减的分数阶模型
Fractional Order Model for Elastic Modulus Attenuation of Soft Clay
【摘要】 通过研究表明,在循环荷载的作用下,软黏土的动弹性模量衰减规律可以分为急剧衰减阶段和缓慢衰减阶段,且缓慢衰减阶段的时间要明显长于急剧衰减阶段,而其缓慢衰减过程具有幂律衰减的特征,可以用分数阶导数方程模型来描述,其解为Mittag-Leffler分布的统计函数。观察分析可以发现,分数阶导数方程的Mittag-Leffler分布与软黏土的弹性模量缓慢衰减阶段能够较好的吻合,与目前常用对数衰减模型相比,分数阶导数模型所用参数都是两个但拟合的精度更高且适用范围更广。
【Abstract】 Research has shown that under cyclic loading, the attenuation of dynamic modulus of soft clay can be divided into sharp attenuation and slow attenuation phases, and the time of slow attenuation phase is significantly longer than sharp attenuation phase.The slow attenuation phase which appears a power-law decay can be described by the fractional order derivative equation model whose solution is Mittag-Leffler distribution statistics function. Observation and analysis can be found that the fractional order derivative equation Mittag-Leffler distribution can fit the elastic modulus of soft clay attenuation better. Compared with the usual logarithmic model, the fractional derivative model uses two parameters, but the fitting precision is higher and the scope of application is wider.
【Key words】 dynamic elastic modulus; fractional order model; logarithm model; vibration frequency; confining pressure;
- 【文献出处】 粉煤灰综合利用 ,Fly Ash Comprehensive Utilization , 编辑部邮箱 ,2019年03期
- 【分类号】TU442
- 【下载频次】60