节点文献
基于多目标优化的无线传感器网络移动充电及数据收集算法
A Mobile Charging and Data Collecting Algorithm Based on Multi-objective Optimization
【摘要】 近年来,通过引入移动设备(ME)为无线传感器网络(WSNs)进行无线充电和数据收集成为一个研究热点。传统方法一般先根据节点的充电需求优先级确定移动路径,再根据该路径依次对节点进行数据收集。该文同时考虑充电需求和数据收集两个维度,以最大化ME的总能量利用率和最小化数据收集平均时延为目标,建立多目标一对多充电及数据收集模型。在ME携带的行驶能量和充电能量不足的前提下,设计路径规划策略和均衡化充电策略,并改进多目标蚁群算法对该文问题进行求解。实验结果表明,该文算法在多种场景下的目标值、Pareto解的数量、Pareto解集的均匀性、分布范围等性能指标均优于NSGA-II算法。
【Abstract】 Recently, the mobile charging and data collecting by using Mobile Equipment(ME) in Wireless Sensor Networks(WSNs) is a hot topic. Existing studies determine usually the traveling path of ME according to the charging requirements of sensor nodes firstly, and then handle the data collecting. In this paper, charging requirement and data collecting are taken into consideration simultaneously. A one-to-many charging and data collecting model for ME is established with two optimization objectives, maximizing the total energy utilization and minimizing the average delay of data collecting. Due to the limited energy of the ME, the path planning strategy and the equalization charging strategy are designed. An improved multi-objective ant colony algorithm is proposed to solve the problem. Experiments show that the objective values, the number of Pareto solutions,the homogeneity of Pareto solutions and the distribution of Pareto solutions obtained by the proposed algorithm are all superior over NSGA-II algorithm.
【Key words】 Wireless Rechargeable Sensor Networks(WRSNs); Data collecting; Multiple-objective optimization;
- 【文献出处】 电子与信息学报 ,Journal of Electronics & Information Technology , 编辑部邮箱 ,2019年08期
- 【分类号】TN929.5;TP212.9
- 【被引频次】14
- 【下载频次】470