节点文献

3D打印中同步带健康状态监测与识别方法研究

Study on synchronous belt health condition monitoring and identification method in 3D printing

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 龚厚仙张浩周娟

【Author】 GONG Houxian;ZHANG Hao;ZHOU Juan;Department of Automotive Engineering,Chuzhou Vocational and Technical College;School of Mechanical Engineering,Zhejiang University;College of Quality and Safety Engineering,China Jiliang University;

【通讯作者】 周娟;

【机构】 滁州职业技术学院汽车工程系浙江大学机械工程学院中国计量大学质量与安全工程学院

【摘要】 同步带是普通FDM 3D打印设备普遍采用的传动定位部件,同步带失效会直接对打印产品质量造成影响.利用声发射(AE)传感器监测3D打印过程中同步带不同健康状态下的声发射信号,利用集合经验模态分解(EEMD)方法提取其信号特征,并通过隐半马尔可夫模型(HSMM)方法构建针对同步带健康状态的识别模型,进而对同步带正常、磨损和裂纹等三种健康状态进行识别,通过实验表明该方法是可行的.

【Abstract】 The synchronous belt is a commonly used driving and positioning part in ordinary FDM 3 D printing equipment. The failure of synchronous belts will directly affect the quality of printing products. Acoustic emission( AE) sensors were used to monitor the AE signals in different healthy states of the synchronous band during 3 D printing processes. The signal features were extracted by the method of ensemble empirical mode decomposition( EEMD). The recognition model for the healthy state of the synchronous band was constructed by using the hidden semi-Markov model( HSMM) method,and then the synchronous band was positioned. Three health states such as normal,wear and crack were identified. Experiments show that the method is feasible.

【基金】 国家自然科学基金项目(No.51675481);安徽省教育厅人才项目(No.gxfx2017224)
  • 【文献出处】 中国计量大学学报 ,Journal of China University of Metrology , 编辑部邮箱 ,2018年03期
  • 【分类号】TP334.8
  • 【下载频次】152
节点文献中: 

本文链接的文献网络图示:

本文的引文网络