节点文献
基于BP神经网络自整定PID恒温控制系统研究
Study of Constant Temperature Control System Based on BP Neural Network Self-Turning PID
【摘要】 针对传统PID热导传感器(TCD)系统控制参数不能在线实时调整的问题,设计了一种基于BP神经网络自整定PID的热导传感器恒温控制系统。该系统硬件上以C8051F060微控制器为主控制器,辅以热导信号的采集、放大、滤波以及温度闭环控制等外部电路,软件上以BP神经网络PID控制算法为核心,搭建了一个完整的热导传感器恒温控制系统。另外,该系统以热导传感器温度为直接控制对象对系统进行仿真分析与实验。实验结果表明,该系统提高了热导传感器温度控制精度,最终温度控制误差在±0.1℃的范围内,增强了系统稳定性及可靠性。
【Abstract】 In terms of the traditional PID thermal conductivity sensor( TCD) system,the real-time parameters cannot be adjusted online.To solve this problem,a self-tuning PID thermal conductivity sensor constant temperature system based on BP neural network was designed.The system took the C8051 F060 micro controller as the main controller,supplemented by external circuit,such as the collection,amplification,filtration and temperature closed-loop control of the thermal conductivity signal.Additionally,the BP neural network and PID control algorithm was used as the core of software to build a thermal conductivity sensor temperature control system.In this paper,the temperature of the TCD was taken as the direct control target for the simulation analysis and experiment.The result shows that the system can improve the temperature control accuracy of the TCD.The final temperature deviation is controlled in the range of ± 0.1 ℃,which enhances stability and reliability of the system.
【Key words】 TCD; constant temperature system; PID control; BP neural network; temperature; control accuracy;
- 【文献出处】 仪表技术与传感器 ,Instrument Technique and Sensor , 编辑部邮箱 ,2018年08期
- 【分类号】TP183;TM407
- 【被引频次】24
- 【下载频次】574