节点文献

基于马氏距离算法区分玻璃样品的研究

Distinguishing the Glass Samples by Mahalanobis Distance Algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘慧娟姜华王璐

【Author】 LIU Huijuan;JIANG Hua;WANG Lu;Beijing Municipal Institute of Forensic Science;

【机构】 北京市公安局刑侦总队

【摘要】 目的借助计算机编程来区分玻璃样品。方法利用激光剥蚀电感耦合等离子体质谱(LA-ICP/MS)方法对200种玻璃样品的42种元素浓度进行测定,通过计算机编程对玻璃样品进行区分。结果随机抽取70种玻璃样品通过马氏距离算法进行归类,68组数据正确归类,测试结果的准确率达到97%。结论依据马氏距离算法能够有效区分玻璃样品。

【Abstract】 Objective To distinguish glass samples by an automated algorithm. Methods The concentrations of 42-kind elements were analyzed from 200-category tested glass samples with LA-ICP/MS method. Mahalanobis distance was used to establish a computer-operated programming algorithm for distinguishing the glass samples. Results Among the 70-catogery glass samples that were randomly selected from the newly-built sample database to classify by mahalanobis distance algorithm, 68 sets of data were sorted out accurately, revealing the distinguishing accuracy up to 97%. Conclusion Glass samples can be effectively distinguished based on Mahalanobis distance algorithm.

【基金】 公安部应用创新计划项目(No.2014YYCXBJSJ003)
  • 【文献出处】 刑事技术 ,Forensic Science and Technology , 编辑部邮箱 ,2018年03期
  • 【分类号】D918.9
  • 【被引频次】1
  • 【下载频次】88
节点文献中: 

本文链接的文献网络图示:

本文的引文网络