节点文献

基于链路分析的作者合著关系预测研究——以图情领域为例

Study on Co-authorship Prediction Based on Link Analysis——Taking LIS Field as Example

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王卫李晓娜闫帅

【Author】 Wang Wei;Li Xiaona;Yan Shuai;School of Government,Beijing Normal University;Department of Public Security of Henan Province;

【机构】 北京师范大学政府管理学院河南省公安厅

【摘要】 作者合著关系的预测对于提高科研合作效率和有效的科研管理具有重要的意义。本文以中国知网中图书情报领域核心期刊作为信息来源,获取15年(2001-2015)的文献信息。通过计算指标方差和指标性质确定对合著关系预测的指标体系,同时对比基于单指标的无监督方法和基于分类算法的监督式机器学习方法 (逻辑回归、支持向量机和随机森林)的预测效果,本文最终确定基于随机森林和指标体系所构造的合著关系预测模型。通过实例应用证明该模型具有较好的准确性和稳定性。

【Abstract】 The prediction of co-authorship is of great significance to improve scientific research cooperation efficiency and manage scientific research more effectively. Using CNKI as the data resource,this paper selected co-authorship in the core journals between 2001 and 2015. The co-authorship prediction index system was determined by index properties and index variance. By comparing the prediction effect of the unsupervised method based on single index and supervised machine learning method based on classification algorithm which contained logistic regression,support vector machines and random forests,this paper finally confirmed the prediction model of the relationship based on the index system and random forests.

【关键词】 合著关系链路分析随机森林
【Key words】 co-authorshiplink analysisrandom forests
  • 【文献出处】 现代情报 ,Journal of Modern Information , 编辑部邮箱 ,2018年11期
  • 【分类号】G353.1
  • 【被引频次】6
  • 【下载频次】369
节点文献中: 

本文链接的文献网络图示:

本文的引文网络