节点文献

基于PCA的遗传神经网络在套损预测中的应用

Application of Genetic Neural Network Based on PCA in Prediction of Casing Damage

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄军孟凡顺张旭杨冠雨

【Author】 HUANG Jun;MENG Fanshun;ZHANG Xu;YANG Guanyu;College of Marine Geo-science,Ocean University of China;Key Lab of MOE for Submarine Geosciences and Prospecting Techniques;

【通讯作者】 孟凡顺;

【机构】 中国海洋大学海洋地球科学学院海底科学与探测技术教育部重点实验室

【摘要】 为有效预测套损发生,掌握油水井套管的状况,减小套损所带来的损失,基于大庆油田南一区井网的现有资料,综合分析采集到的各种因素,建立了基于主成分分析的遗传神经网络模型。该模型首先对原始数据进行主成分分析,并将得到的主成分作为神经网络的输入,然后用遗传算法确定了网络的最佳初始权值和阈值,最后用神经网络进行预测。结果表明,该方法油井和水井的预测准确率分别达85%和82. 5%,证明经过主成分分析和遗传算法优化的BP神经网络的准确性和可靠性。

【Abstract】 In order to effectively predict casing damage,grasp the casing condition of oil and water wells and reduce the losses of casing damage,a genetic neural network model based on principal component analysis was established based on the existing data of well pattern in Nanyi District of Daqing Oilfield. Firstly,the original data is analyzed by principal component analysis(PCA),and the obtained principal components are used as the inputs of neural network. Then the optimal initial weights and thresholds of the neural network are determined by genetic algorithm. Finally,the casing damage is predicted using the neural network. The prediction result of a case shows that the casing damage prediction accuracy of oil and water wells using this method is 85. 0% and 82. 5% respectively,which proves the accuracy and reliability of the BP neural network optimized by principal component analysis and genetic algorithm.

【基金】 科学技术部863计划海洋技术领域项目“海洋立管系统安全评价的无损检测关键技术”(910701130)
  • 【文献出处】 西安石油大学学报(自然科学版) ,Journal of Xi’an Shiyou University(Natural Science Edition) , 编辑部邮箱 ,2018年06期
  • 【分类号】TE931.2
  • 【被引频次】5
  • 【下载频次】213
节点文献中: 

本文链接的文献网络图示:

本文的引文网络