节点文献

EM算法的ε-加速及在有限混合模型中的应用

ε-Acceleration of EM algorithm and its application in finite hybrid model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 鲁纳纳余旌胡丁立新林广明

【Author】 Lu Nana;Yu Jinghu;Ding Lixin;Lin Guangming;School of Science, Wuhan University of Technology;School of Computer Science, Wuhan University;School of Computer Sciences,Shenzhen Institute of Information Technology;

【机构】 武汉理工大学武汉大学计算机学院深圳信息职业技术学院信息技术研究所

【摘要】 为解决EM算法对初始值比较敏感,易陷入局部最优和当模型缺失变量或隐变量的比例较高时收敛速度慢等问题,本文首先采用经典的K-means聚类算法进行初始值选取,使得初始值更加接近EM序列的稳定点,在一定程度上能避免EM序列陷入局部极值,然后采用ε-加速算法进行加速,即K-means+ε-加速EM算法,并比较不同情况加速的EM算法在有限混合模型参数估计中的时间成本和精度大小。数值结果表明:在不降低精度的情况下K-means+ε-加速EM算法在各种条件下均能够大大加快EM算法的收敛速度。

【Abstract】 In order to solve the problem that EM algorithm is sensitive to initial value, easy to fall into local optimum and slow convergence speed when the ratio of missing variables or hidden variables is high, this paper firstly uses the classical K-means clustering algorithm to select the initial value. The initial value is closer to the stable point of the EM sequence, and the EM sequence can be prevented from falling into the local extremum to a certain extent. Then the acceleration algorithm is adopted to accelerate EM sequence, that is, the K-means+ accelerated EM algorithm, and the time cost and precision of the accelerated EM algorithm has been compared in the parameter estimation of the finite mixed model. Numerical results show that K-means + accelerated EM algorithm can greatly speed up the convergence of EM algorithm under various conditions without reducing the accuracy.

【基金】 广东省自然科学基金资助项目(2015A030313587);深圳市科技计划(JCYJ20130401095559825,JCYJ20150417094158025)
  • 【文献出处】 深圳信息职业技术学院学报 ,Journal of Shenzhen Institute of Information Technology , 编辑部邮箱 ,2018年05期
  • 【分类号】TP311.13
  • 【下载频次】63
节点文献中: 

本文链接的文献网络图示:

本文的引文网络