节点文献
一类(3+1)维非线性Jaulent-Miodek分层发展方程的行波解分岔(英文)
Bifurcations of traveling wave solutions of a(3+1)-dimensional nonlinear model generated by the Jaulent-Miodek hierarchy
【摘要】 应用动力系统分岔理论研究一类(3+1)维非线性Jaulent-Miodek分层发展方程的行波解分岔,根据分岔参数的不同值得到非线性变换系统的相图.通过计算得到(3+1)维非线性Jaulent-Miodek分层发展方程的精确行波解,包括周期波解、孤立波解、扭波解及反扭波解.
【Abstract】 We study bifurcation of traveling wave solutions of a class of(3+1)-dimensional nonlinear evolution equations generated by the Jaulent-Miodek hierarchy. We obtain phase portraits of the nonlinear transformation system according to the different bifurcation regions of parameters. Different kinds of traveling wave solutions, such as the periodic wave solutions, solitary wave solutions, kink wave solutions and anti-kink wave solutions are found to exist under certain parameter conditions, and the exact solutions of traveling waves are obtained.
【关键词】 (3+1)维非线性发展方程;
分岔;
行波解;
精确解;
【Key words】 (3+1)-dimensional nonlinear evolution equation; bifurcation; traveling wave solution; exact solution;
【Key words】 (3+1)-dimensional nonlinear evolution equation; bifurcation; traveling wave solution; exact solution;
【基金】 The Natural Science Foundation of China(11772007,11372014,11072007,11290152,11072008);Beijing Natural Science Foundation(1172002,1122001)
- 【文献出处】 上海师范大学学报(自然科学版) ,Journal of Shanghai Normal University(Natural Sciences) , 编辑部邮箱 ,2018年03期
- 【分类号】O175
- 【被引频次】1
- 【下载频次】50