节点文献

考虑工作者信誉的众包质量EM评估方法

EM Evaluation Method of Crowdsourcing Quality Considering the Reputation of Workers

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 仲秋雁刘志娟

【Author】 Zhong Qiuyan;Liu Zhijuan;Faculty of Management and Economics,Dalian University of Technology;

【机构】 大连理工大学管理与经济学部

【摘要】 在众包质量评估中使用EM算法时较多赋予工作者相同的权重将导致结果容易陷入局部最优,然而工作者提交答案的可信度不尽相同,信誉良好的工作者给出的答案可信度更高;为此提出一种考虑工作者信誉的众包质量评估方法。首先根据工作者在众包平台上的历史交易行为建立工作者信誉模型,然后将信誉作为评价标准对工作者进行筛选,并以工作者信誉值为权重加入到EM算法,以改进其初始值确定过程,改善评估结果。进一步通过实例验证了该方法的有效性,并对提出方法的阈值参数进行了率定。

【Abstract】 When the EM algorithm is used in crowdsourcing quality assessment, the same weight will result in the result falling into local optimum easily. However, the reliability of the answer submitted by the worker is not the same, and the credibility of the answer given by the worker with good reputation is even higher. In this paper, a method of crowdsourcing quality evaluation considering the reputation of workers is proposed. Firstly, according to the worker’s historical transaction behavior on crowdsourcing platform, the reputation model of the worker is established; then the reputation is selected as the evaluation criterion, and the value of the worker’s reputation is added to the EM algorithm, in order to improve its initial value determination process, and improve the evaluation results. An example is given to verify the effectiveness of the proposed method, and the threshold parameters of the proposed method are determined.

【关键词】 众包质量评估EM算法信誉模型
【Key words】 crowdsourcingquality evaluateEM algorithmreputation model
【基金】 国家自然科学基金项目“大数据环境下知识融合与服务的方法及其在电子政务中的应用研究”(71533001)
  • 【文献出处】 科技管理研究 ,Science and Technology Management Research , 编辑部邮箱 ,2018年21期
  • 【分类号】F273.2
  • 【被引频次】9
  • 【下载频次】203
节点文献中: 

本文链接的文献网络图示:

本文的引文网络