节点文献
改进遗传算法的需求可拆分车辆路径优化研究
Study on Split-Delivery Vehicle Routing Optimization by Improved Genetic Algorithm
【摘要】 针对需求可拆分车辆路径优化问题,以车辆运载能力有限性为约束条件,建立了以最小化车辆行驶距离为目标的数学模型,并设计了一个改进遗传算法进行求解。改进遗传算法在利用遗传算法进行全局搜索的基础上利用模拟退火操作进行局部寻优以找到最优解,并针对问题设计了一个新型的编码解码方法以提高计算效率。通过进行仿真测试将改进遗传算法与传统遗传算法的最优解进行对比,验证了改进遗传算法的有效性。
【Abstract】 In this paper,we focused our attention on Split-delivery vehicle routing problem and established an optimization model to minimize the total distance for delivering all the required supplies to the targets with limited carrying capacity. A hybrid genetic algorithm is proposed which integrates a simulated annealing procedure into the genetic evolution in this paper. The proposed algorithm takes the advantages of the global search capability of genetic algorithm to find the promised population and employs the simulated annealing procedure to further explore the best solution. Moreover,a special encoding scheme was designed for this hybrid algorithm to improve computation efficiency. Numerical study shows the hybrid algorithm is more effective than traditional genetic algorithm.
【Key words】 Route optimization; Split-delivery vehicle routing problem; Genetic algorithm; Simulated annealing;
- 【文献出处】 计算机仿真 ,Computer Simulation , 编辑部邮箱 ,2018年03期
- 【分类号】TP18;U116.2
- 【被引频次】32
- 【下载频次】677