节点文献

Neuroanatomy and morphological diversity of brain cells from adult crayfish Cherax quadricarinatus

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 段虎金松君李富花张晓军相建海

【Author】 DUAN Hu;JIN Songjun;LI Fuhua;ZHANG Xiaojun;XIANG Jianhai;Key Laboratory of Experimental Marine Biology,Institute of Oceanology,Chinese Academy of Sciences;Laboratory for Marine Biology and Biotechnology,Qingdao National Laboratory for Marine Science and Technology;

【通讯作者】 相建海;

【机构】 Key Laboratory of Experimental Marine Biology,Institute of Oceanology,Chinese Academy of SciencesLaboratory for Marine Biology and Biotechnology,Qingdao National Laboratory for Marine Science and Technology

【摘要】 As in vertebrates, brains play key roles in rhythmic regulation, neuronal maintenance, diff erentiation and function, and control of the release of hormones in arthropods. But the structure and functional domains of the brain are still not very clear in crustaceans. In the present study, we reveal the structural details of the brain in the redclaw crayfish using hematoxylin-eosin staining and microscopic examination, firstly. The brain of crayfish is consist of three main parts, namely, protocerebrum, deutocerebrum, and tritocerebrum, including some tracts and commissures, briefly. Secondly, at least 9 kinds of brain cells were identified on the basis of topology and cell shapes, as well as antibody labeling. We also provide morphological details of most cell types, which were previously un-described. In general, four types of glia and three types of neurosecretory cells were described except cluster 9/11 and cluster 10 cells. Glia were categorized into another three main kinds:(1) surface glia;(2) cortex glia; and(3) neuropile glia in addition to astrocytes identified by GFAP labelling. And neurosecretory cells were categorized into I, Ⅱ and III types based on morphological observation. Finally, cluster 9/11 and 10 cells derived from the brain of crayfish, could be used for primary culture about 7–9 d under the optimized conditions. There results provide a resource for improving the knowledge of the still incompletely defined neuroendocrinology of this species. Using the crayfish as an animal model, we are easy to carry out further research in manipulating their endocrine system, exploring cellular and synaptic mechanisms so much as larval production on a small scale, such as in a cell or tissue.

【Abstract】 As in vertebrates, brains play key roles in rhythmic regulation, neuronal maintenance, diff erentiation and function, and control of the release of hormones in arthropods. But the structure and functional domains of the brain are still not very clear in crustaceans. In the present study, we reveal the structural details of the brain in the redclaw crayfish using hematoxylin-eosin staining and microscopic examination, firstly. The brain of crayfish is consist of three main parts, namely, protocerebrum, deutocerebrum, and tritocerebrum, including some tracts and commissures, briefly. Secondly, at least 9 kinds of brain cells were identified on the basis of topology and cell shapes, as well as antibody labeling. We also provide morphological details of most cell types, which were previously un-described. In general, four types of glia and three types of neurosecretory cells were described except cluster 9/11 and cluster 10 cells. Glia were categorized into another three main kinds:(1) surface glia;(2) cortex glia; and(3) neuropile glia in addition to astrocytes identified by GFAP labelling. And neurosecretory cells were categorized into I, Ⅱ and III types based on morphological observation. Finally, cluster 9/11 and 10 cells derived from the brain of crayfish, could be used for primary culture about 7–9 d under the optimized conditions. There results provide a resource for improving the knowledge of the still incompletely defined neuroendocrinology of this species. Using the crayfish as an animal model, we are easy to carry out further research in manipulating their endocrine system, exploring cellular and synaptic mechanisms so much as larval production on a small scale, such as in a cell or tissue.

【基金】 Supported by the National Natural Science Foundation of China(No.41376165);the National Natural Science Foundation of ChinaIsrael Science Foundation(NSFC-ISF)(No.31461143007);the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology(No.2015ASKJ02)
  • 【文献出处】 Journal of Oceanology and Limnology ,海洋湖沼学报(英文) , 编辑部邮箱 ,2018年06期
  • 【分类号】S917.4
  • 【被引频次】1
  • 【下载频次】39
节点文献中: 

本文链接的文献网络图示:

本文的引文网络