节点文献

带高斯扰动和协同寻优的蝙蝠粒子群混合算法

Hybrid bat and PSO algorithm with gaussian disturbance and cooperative optimization

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵志刚莫海淼温泰刘峰

【Author】 ZHAO Zhi-gang;MO Hai-miao;WEN Tai;LIU Feng;School of Computer and Electronical Information,Guangxi University;

【通讯作者】 赵志刚;

【机构】 广西大学计算机与电子信息学院

【摘要】 为了进一步提高粒子群算法的性能,提出了一种新的群体智能优化算法——带高斯扰动和协同寻优的蝙蝠粒子群混合算法。该混合算法利用蝙蝠个体脉冲的回声定位对最优粒子gbest进行高斯扰动而产生一个局部解,把该局部解加到蝙蝠种群中,然后根据局部解的位置优劣与蝙蝠个体产生的响度来更新粒子群。在寻优过程中,对gbest进行高斯扰动增加了种群的多样性而避免粒子群过快陷入局部最优,并且加强了蝙蝠种群与粒子群的信息交互,协同寻优。与蝙蝠算法、标准粒子群算法、烟花算法、带高斯扰动的粒子群算法、粒子群差分算法相比,带高斯扰动和协同寻优的蝙蝠粒子群混合算法的总体性能优于其他5种算法。

【Abstract】 In order to further improve the performance of particle swarm optimization algorithm,a new swarm intelligent optimization algorithm named hybrid Bat and Particle Swarm Optimization algorithm with Gaussian disturbance and cooperation optimization is proposed. The new algorithm uses the echolocation of the individual bat particle’s pulse to produce a local solution to the optimal particle of gbestby Gaussian perturbation. The local solution is added to the bat population,and then the particle swarm is updated according to the location of the local solution and the loudness of the individual bat. In the process of optimization,Gaussian disturbance increases the diversity of the population and avoids the particle swarm into the local optimal too fast,and strengthens the information interaction and collaborative optimization between the bat population and the particle swarm. Compared with bat algorithm,standard particle swarm algorithm,fireworks algorithm,PSO with Gaussian mutation,and PSO-DE,the presented hybrid algorithm has better overall performance.

【基金】 广西自然科学基金资助项目(2015GXNSFAA139296)
  • 【文献出处】 广西大学学报(自然科学版) ,Journal of Guangxi University(Natural Science Edition) , 编辑部邮箱 ,2018年06期
  • 【分类号】TP18
  • 【被引频次】5
  • 【下载频次】258
节点文献中: 

本文链接的文献网络图示:

本文的引文网络