节点文献

小波变换的EDXRF光谱金属组分特征峰位置识别

Identification of Metal Components Characteristic Peak Position of Energy Dispersive X-Ray Fluorescence Spectra Based on the Wavelet Transformation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 章炜徐华段连飞马明俊甘婷婷刘晶王刘军张玉钧赵南京刘文清

【Author】 ZHANG Wei;XU Hua;DUAN Lian-fei;MA Ming-jun;GAN Ting-ting;LIU Jing;WANG Liu-jun;ZHANG Yu-jun;ZHAO Nan-jing;LIU Wen-qing;Army Officer Academy of PLA;Anhui KeLi Information Industry Co.,Ltd.;Key Laboratory of Environment Optics and Technology,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;Key Laboratory of Ion Beam Bioengineering,Institute of Technical Biology and Agriculture Engineering,Chinese Academy of Sciences;

【机构】 中国人民解放军陆军军官学院安徽科力信息产业有限责任公司中国科学院环境光学与技术重点实验室中国科学院安徽光学精密机械研究所中国科学院离子束生物工程重点实验室中国科学院技术生物与农业工程研究所

【摘要】 主要研究X射线荧光光谱金属组分特征谱位置的确定。依据不同金属组分的特征谱特性,分析了特征谱的选取规律,在奇异值分析理论和模极大值理论的基础上,分析了基于特征谱小波分解系数的模极大值提取方法,在不同分解尺度下的特点及其传播特性,提出了基于模极大值传播的区间特征峰筛选方法,并对实际测量光谱进行了实验分析。结果表明:利用bior4.4小波作为基函数对实验测量的全能谱数据进行4层小波变换,利用模极大值传播特性,可以消除全能谱上叠加的部分噪声对光谱分析造成的阶跃影响;为提高特征峰的位置识别概率,对小波变换中小于给定阈值的分解系数进行压缩,将实验获取的X射线荧光全能谱第4层小波分解系数直接进行特征峰识别,得到的677个峰值位置,压缩到186个;在此基础上,再采用模极大值传播的区间特征峰筛选方法,筛选区间初始值设置为600eV,经识别得到的特征峰峰值位置仅为27个,识别准确率得到有效提高。

【Abstract】 In this paper,the accurate identification problem of energy dispersive X-ray fluorescence(EDXRF)characteristic peak position was studied.Based on the characteristic spectra character of the different metal components,the choosing rule of the characteristic spectra was analyzed.According to the theories of singular value analysis and modulus maxima,the extraction method of modulus maxima was analyzed which based on the wavelet decomposition coefficients of characteristic spectra.Moreover,the feature of the characteristic spectra wavelet decomposition coefficients and their propagation were analyzed in detail.The method of the interval characteristic peak selection was put forward based on the propagation of modulus maxima.And this method was applied to the actual measurement spectra.The result showed that the wavelet transform of four levels was applied to full energy spectra data using the basis function of bior4.4 wavelet.For the full energy spectra,the phase step influence of the some superimposed noise could be eliminated using the propagation of modulus maxima.In order to increase the identification probability of characteristic spectra,the decomposition coefficients were compressed which were less than the threshold value.In addition,667 peak positions were identified for the fourth level wavelet decomposition coefficients of EDXRF spectra which were not processed.186 peak positions were identified when they were compressed.Then the method of interval characteristic peak selection using modulus maxima propagation feature was applied and the initial value of the screening interval was set 600 eV.The identified result of the characteristic peak position was 27.The experimental result showed that the accurate rate of peak location identification was enhanced effectively.

【基金】 国家自然科学基金项目(61405257);安徽省自然科学基金项目(1508085MF138)资助
  • 【文献出处】 光谱学与光谱分析 ,Spectroscopy and Spectral Analysis , 编辑部邮箱 ,2018年06期
  • 【分类号】O657.34
  • 【被引频次】5
  • 【下载频次】145
节点文献中: 

本文链接的文献网络图示:

本文的引文网络