节点文献
基于贝叶斯框架融合深度信息的显著性检测
Saliency detection method fused depth information based on Bayesian framework
【摘要】 复杂背景下,传统显著性检测方法经常遭遇检测结果不稳定和准确率低的问题。针对这些问题,提出一种基于贝叶斯框架融合深度信息的显著性检测方法。首先利用全局对比、局部对比和前景背景对比方法获取颜色显著图,并利用非均质中心-邻居差异的深度对比方法获取深度显著图。其次采用贝叶斯模型融合颜色显著图和深度显著图,获得输出显著图。实验结果表明,本文的方法能有效检测出复杂背景下的显著目标,并在公开的NLPR-RGBD数据集和NJU-DS400数据集上取得较高检测精确度。
【Abstract】 In the complex background, the traditional saliency detection methods often encounter the problems of unstable detection results and low accuracy. To address this problem, a saliency detection method fused depth information based on Bayesian framework is proposed. Firstly, the color saliency map is obtained by using a variety of contrast methods which includes global contrast, local contrast and foreground-background contrast, and the depth saliency map is obtained by using the depth contrast method based on the anisotropic center-surround difference. Secondly, using the Bayesian model to fuse the color-based saliency map and the depth-based saliency map. The experimental results show that the proposed method can effectively detect the salient targets under complex background and achieve higher detection accuracy on the published NLPR-RGBD dataset and NJU-DS400 dataset.
【Key words】 saliency detection; color contrast; depth contrast; Bayesian fusion;
- 【文献出处】 光电工程 ,Opto-Electronic Engineering , 编辑部邮箱 ,2018年02期
- 【分类号】TP391.41
- 【被引频次】11
- 【下载频次】131