节点文献

基于贝叶斯框架融合深度信息的显著性检测

Saliency detection method fused depth information based on Bayesian framework

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵宏伟何劲松

【Author】 Zhao Hongwei;He Jinsong;School of Information Science and Technology, University of Science and Technology of China;

【机构】 中国科学技术大学信息科学技术学院

【摘要】 复杂背景下,传统显著性检测方法经常遭遇检测结果不稳定和准确率低的问题。针对这些问题,提出一种基于贝叶斯框架融合深度信息的显著性检测方法。首先利用全局对比、局部对比和前景背景对比方法获取颜色显著图,并利用非均质中心-邻居差异的深度对比方法获取深度显著图。其次采用贝叶斯模型融合颜色显著图和深度显著图,获得输出显著图。实验结果表明,本文的方法能有效检测出复杂背景下的显著目标,并在公开的NLPR-RGBD数据集和NJU-DS400数据集上取得较高检测精确度。

【Abstract】 In the complex background, the traditional saliency detection methods often encounter the problems of unstable detection results and low accuracy. To address this problem, a saliency detection method fused depth information based on Bayesian framework is proposed. Firstly, the color saliency map is obtained by using a variety of contrast methods which includes global contrast, local contrast and foreground-background contrast, and the depth saliency map is obtained by using the depth contrast method based on the anisotropic center-surround difference. Secondly, using the Bayesian model to fuse the color-based saliency map and the depth-based saliency map. The experimental results show that the proposed method can effectively detect the salient targets under complex background and achieve higher detection accuracy on the published NLPR-RGBD dataset and NJU-DS400 dataset.

  • 【文献出处】 光电工程 ,Opto-Electronic Engineering , 编辑部邮箱 ,2018年02期
  • 【分类号】TP391.41
  • 【被引频次】11
  • 【下载频次】131
节点文献中: 

本文链接的文献网络图示:

本文的引文网络