节点文献

基于MC-UVE、GA算法及因子分析对葡萄酒酒精度近红外定量模型的优化研究

Optimization of Near Infrared Quantitative Model for Wine Alcohol Content Based on MC-UVE,GA Algorithm and Factor Analysis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王怡淼朱金林张慧赵建新顾小红朱华新

【Author】 WANG Yi-miao;ZHU Jin-lin;ZHANG Hui;ZHAO Jian-xin;GU Xiao-hong;ZHU Hua-xin;State Key Laboratory of Food Science and Technology,Jiangnan University;School of Food Science and Technology,Jiangnan University;College of Control Science and Engineering,Zhejiang University;Zhangjiagang Entry-Exit Inspection and Quarantine Bureau of P.R.C.;International Joint Laboratory on Food Safety,Jiangnan University;School of Science,Jiangnan University;

【机构】 江南大学食品科学与技术国家重点实验室江南大学食品学院浙江大学控制科学与工程学院张家港出入境检验检疫局食品安全国际合作联合实验室江南大学理学院

【摘要】 对葡萄酒酒精度偏最小二乘(Partial least squares,PLS)回归模型进行优化研究。使用近红外光谱仪采集葡萄酒样本的光谱数据,用于建立酒精度定量模型,实现在线快速检测。通过蒙特卡罗无信息变量消除(Monte Carlo uninformative variable elimination,MC-UVE)和遗传算法(Genetic algorithm,GA)进行变量选择,基于被选择的变量分别进行PLS和因子分析(Factor analysis,FA),建立回归模型。结果表明,MC-UVE-GA-FAR模型预测集相关系数(R2)为0.946,预测均方根误差(Root mean square error of prediction,RMSEP)为0.215,效果优于MC-UVE-GA-PLS模型。与基于全范围光谱所建PLS回归模型相比,模型效果有所提升,而且模型所选变量个数仅为6,极大地简化了模型。MC-UVE和GA算法与FA分析结合可以实现模型的优化。

【Abstract】 The optimization of the PLS regression model of wine alcohol content was studied. The near-infrared spectroscopy was used to collect the spectral data of the wine samples and the data were used to establish the quantitative model of alcohol to achieve rapid on-line detection. PLS regression model and FA model were established based on the selected variables,chosen by MC-UVE and GA. The results show that the MC-UVE-GA-FAR model,which yielded R2 of 0. 946 and RMSEP of 0. 215,is superior to the MV-UVE-GA-PLS model. In comparison of the performance of the full-spectra PLS regression model,the model based on the selected wave numbers is much better,and 6 variables in total are selected,which greatly simplifies the model. The study indicates the MC-UVE,GA and FA can optimize the model.

  • 【文献出处】 发光学报 ,Chinese Journal of Luminescence , 编辑部邮箱 ,2018年09期
  • 【分类号】O657.33;TS262.6
  • 【被引频次】23
  • 【下载频次】565
节点文献中: 

本文链接的文献网络图示:

本文的引文网络