节点文献
生物效应大数据评估聚类算法的并行优化
Parallel optimization for clustering algorithm of large-scale biological effect evaluation
【摘要】 生物效应评估通过测定和分析生物制剂刺激各种人体细胞后的数字化转录组反应,能够快速确定相关的检测标识物和治疗靶标。基于潜在生物制剂作用下的细胞反应大数据,推测突发生物效应模式。综合考虑了MPI、Open MP两级并行加速,移植优化了基因探针富集分析(GSEA)比对算法和聚类算法,使用不同的数据量和并行度验证了优化后算法潜在的良好可扩展性和快速处理海量生物信息数据的能力。
【Abstract】 The biological assessment, including matching algorithm, is realized by measuring and analyzing the human cells’ transcription reaction after stimulated by biological agents, to quickly determine the relevant detection markers and treatment targets. Similarly, the big data strategy was used to estimate the sudden biological effect model. MPI, Open MP two-level parallel acceleration was considered, transplantation and optimization of the GSEA alignment algorithm and clustering algorithm were used. The potential scalability and the ability of dealing with massive data by testing different scales of data and parallelisms were improved.
- 【文献出处】 大数据 ,Big Data Research , 编辑部邮箱 ,2018年03期
- 【分类号】TP311.13
- 【被引频次】1
- 【下载频次】198