节点文献
轮胎滑移能量在电动汽车控制中的应用研究
Tire Slip Energy Application in Electric Vehicles Control
【摘要】 针对四轮驱动电动汽车力矩分配问题,提出了一种考虑轮胎滑移能量的四轮驱动电动汽车控制结构与力矩分配方法.该方法将高级底盘控制HCC结构与最优控制相结合,在HCC结构的基础上,将车辆侧向力的控制从HCC结构中分离,通过最优控制车辆主动前轮转向和直接横摆力矩来实现车辆的稳定行驶.提出了一种适用于HCC结构的增量型最小化滑移能量力矩分配方法,并基于UniTire滑移能量模型进行了相关的动力学仿真.结果表明在不控制前轮转向和横摆力矩的情况下车辆是失稳的,而采用文中所提结构结合最小化轮胎负荷率或最小化轮胎滑移能量是可以保证车辆侧向稳定的.
【Abstract】 Since there is less research on the effect of the minimizing tire slip energy,different opinions are resulted on the key issues in vehicle stability control area.In this paper,a new method was proposed for the control structure and torque distribution on 4 in-wheel driven electric vehicle to take into account the tire slip energy.Combining the advanced chassis control HCC structure with optimal theory,the vehicle stability was achieved by optimally controlling the active front wheel steering and direct yaw moment,separated from HCC structure.More importantly,an increment minimization method of slip energy torque distribution was also proposed for HCC structure,and its related dynamic simulation was carried out based on UniTire slip energy model.Compared with the traditional control structure,that the vehicle is unstable without adjusting the front wheel steering and yaw moment,the structure proposed in the dissertation can ensure the lateral stability with minimizing the tire workload usage or minimizing the tire slip energy.
【Key words】 vehicle stability; control; torque distribution; tire slip energy;
- 【文献出处】 北京理工大学学报 ,Transactions of Beijing Institute of Technology , 编辑部邮箱 ,2018年09期
- 【分类号】U469.72
- 【被引频次】3
- 【下载频次】239