节点文献

基于ANN和LSSVR的造纸废水处理过程软测量建模

Soft Sensor Modeling of Papermaking Wastewater Treatment Processes Based on ANN and LSSVR

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 汪瑶徐亮殷文志胡慕伊黄明智刘鸿斌

【Author】 WANG Yao;XU Liang;YIN Wen-zhi;HU Mu-yi;HUANG Ming-zhi;LIU Hong-bin;Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology,Nanjing Forestry University;Department of Water Resources and Environment,Sun Yat-Sen University;State Key Laboratory of Pulp and Paper Engineering,South China University of Technology;

【机构】 南京林业大学江苏省制浆造纸科学与技术重点实验室中山大学水资源与环境系华南理工大学制浆造纸工程国家重点实验室

【摘要】 针对造纸废水处理系统的时变性、非线性和复杂性等特点,将人工神经网络(ANN)和最小二乘支持向量回归(LSSVR)分别用于造纸废水处理过程中的软测量建模,实现造纸废水处理过程中出水化学需氧量和出水悬浮固形物浓度的预测。ANN采用误差反向传播算法建模,LSSVR通过粒子群优化算法进行模型参数优化。结果表明,与ANN模型预测结果相比,LSSVR模型预测结果的均方根误差降低了50%以上,相关系数提高了近10%,表明LSSVR模型在造纸废水处理过程中的预测精度高于ANN模型。

【Abstract】 Concerning the time-varying,nonlinear,and complex characteristics of papermaking wastewater treatment systems,soft sensor modeling methods based on artificial neural network(ANN) and least squares support vector regression(LSSVR) were used to predict effluent chemical oxygen demand and suspended solids in a papermaking wastewater treatment process.ANN model was established by using error back propagation algorithm.The particle warm optimization was used to optimize model parameters in the LSSVR model.The results showed that the root mean square error of LSSVR model reduced by more than 50% compared with that of ANN model,and the correlation coefficient of LSSVR model increased by about 10% compared with that of ANN model.These results indicated that the LSSVR model had better prediction performance and higher accuracy compared to the ANN model in papermaking wastewater treatment process.

【基金】 制浆造纸工程国家重点实验室开放基金资助项目(201610);南京林业大学高层次人才科研启动基金(163105996);江苏省制浆造纸科学与技术重点实验室开放基金项目(201530)
  • 【文献出处】 中国造纸学报 ,Transactions of China Pulp and Paper , 编辑部邮箱 ,2017年01期
  • 【分类号】TP18;X793
  • 【被引频次】18
  • 【下载频次】162
节点文献中: 

本文链接的文献网络图示:

本文的引文网络