节点文献

基于视觉注意的随机游走图像分割

Random walks for image segmentation based on visual attention

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王富治秦付军蒋代君宋昌林

【Author】 Wang Fuzhi;Qin Fujun;Jiang Daijun;Song Changlin;School of Mechanical Engineering of Xihua Univeristy;

【机构】 西华大学机械工程学院

【摘要】 传统随机游走图像分割需要多次交互设置种子点以获得理想的分割结果。在视觉注意的基础上,提出了一种新的自动确定种子点的随机游走图像分割算法。首先对图像进行超像素分割,并生成概率边界图(PBM);然后基于Itti模型,通过视觉注意焦点的转移搜寻待分割的关键区域;为确定关键分割区域种子点,以当前注意焦点作为极点对概率边界图进行极坐标变换,在获得的极坐标概率边界图上建立关于焦点区域边界的能量函数,采用图论max-flow min-cut算法最小化能量函数检测焦点区域的最优边界,焦点区域边界内的超像素即为种子点;最后以超像素为节点构造图,在图上随机游走完成图像分割。在Berkeley Segmentation Data Set上的实验表明本文方法能有效分割复杂图像。

【Abstract】 The traditional random walks based image segmentation algorithm requires setting seed points interactively to obtain the desired segmentation results. Based on visual attention,the paper proposes a new random walks based image segmentation algorithm with the seed points determined automatically. Firstly,the probability boundary map( PBM) is generated and the image is divided into super pixels. Then,the key segmentation region is searched by shifting visual attention focus with Itti model. In order to determine the seed points of the key segmentation region,the probabilistic boundary map is transformed into polar coordinates map taking the current focus of attention as the pole. The energy function about the boundary of the focal region is established on the obtained polar coordinate probabilistic boundary map. The energy function can be minimized by the max-flow min-cut algorithm,and the super pixels within the boundary of focal region are the seed points of segmentation region. Finally,super pixels of images are used as nodes to construct a graph,random walks algorithm is conducted on the graph to complete the image segmentation. The experiments on Berkeley Segmentation Data Set show that the proposed method is effective to complex images’ segmentation.

【基金】 教育部春晖计划项目(12202528);西华大学重点项目(Z1120223)资助
  • 【文献出处】 仪器仪表学报 ,Chinese Journal of Scientific Instrument , 编辑部邮箱 ,2017年07期
  • 【分类号】TP391.41
  • 【被引频次】4
  • 【下载频次】255
节点文献中: 

本文链接的文献网络图示:

本文的引文网络