节点文献
Banach空间非线性脉冲微分方程的稳定性分析
Stability Analysis of Nonlinear Impulsive Differential Equations in Banach Spaces
【摘要】 针对Banach空间中一类非线性脉冲微分方程,获得了该类问题稳定及渐近稳定的条件.将隐式Euler法用于求解上述问题,得到了方法的稳定性条件.
【Abstract】 A class of nonlinear impulsive differential equations are considered in Banach spaces.The stability and asymptotic stability conditions of the analytic solutions of the problems are derived.The implicit Euler method is adapted for solving the above mentioned problems,the numerical stability results of the method are also obtained.
【关键词】 脉冲微分方程;
隐式Euler法;
稳定性;
渐近稳定性;
【Key words】 impulsive differential equations; implicit Euler method; stability; asymptotic stability;
【Key words】 impulsive differential equations; implicit Euler method; stability; asymptotic stability;
【基金】 国家自然科学基金项目(11571291,11371302);湖南省教育厅重点项目(15A184)
- 【文献出处】 湘潭大学自然科学学报 ,Natural Science Journal of Xiangtan University , 编辑部邮箱 ,2017年01期
- 【分类号】O175;O177.2
- 【被引频次】3
- 【下载频次】90