节点文献

改进蚁群算法在复杂环境中机器人路径规划上的应用

Improved Ant Colony Algorithm in Complex Environments on the Robot Path Planning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李龙澍喻环

【Author】 LI Long-shu;YU Huan;College of Computer Science and Technology,Anhui University;

【机构】 安徽大学计算机科学与技术学院

【摘要】 针对经典蚁群算法在复杂环境下的机器人路径规划问题中表现出的收敛速度慢,容易陷入局部最优等问题,提出一种改进算法.依据方向指导信息来优化初始信息素的分布,加快搜索速度,缩减搜索初期的时间消耗;通过优化信息素的挥发与更新规则,保留局部与全局优秀路径的优势信息,改善收敛速度慢的问题;基于区域安全因素对转移概率进行改进,从而避免陷入局部最优和死锁等问题.最后,通过栅格法对仿真环境建模,在不同复杂度与规模的多张地图上进行仿真实验,对比验证了该算法在复杂环境下路径规划问题上的有效性和对不同规模地图的适应性.

【Abstract】 For the problem such as slowconvergence and being easy to fall into local optimum of classical ant colony algorithm,an improved algorithm was proposed in this paper for robot path planning in complex environment.We optimize the distribution of the initial pheromone depending on the direction guidance information to accelerate the speed of search and reduce the time cost in initial search.For the optimizing of volatilization and updating rules of pheromone,we preserve the superiority of local excellent path and global excellent path to improve the slowconvergence.We ameliorate the computational method of transition probability based on the area safety factor to avoid the problems of falling into local optimum and deadlock.Finally,the grid method is used to establish simulation environment.Through simulation experiments on different complexity and scale maps,the algorithm is compared with classical algorithm.The experimentresults demonstratethe proposed algorithm shows more effectively and stronger in environmental adaptation in the complex environment.

【基金】 国家自然科学基金项目(61402005)资助;安徽省自然科学基金项目(1508085MF127)资助
  • 【文献出处】 小型微型计算机系统 ,Journal of Chinese Computer Systems , 编辑部邮箱 ,2017年09期
  • 【分类号】TP18;TP242
  • 【被引频次】37
  • 【下载频次】482
节点文献中: 

本文链接的文献网络图示:

本文的引文网络