节点文献

基于核偏最小二乘法的物联网无线传感网络故障分析与研究

Fault analysis and research of wireless sensor network based on kernel partial least squares

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 周光海宁兆龙陈志奎钟华胡月明

【Author】 ZHOU Guang-hai;NING Zhao-long;CHEN Zhi-kui;ZHONG Hua;HU Yue-ming;School of Software,Dalian University of Technology;School of Natural Resources and Environment,South China Agricultural University;

【机构】 大连理工大学软件学院华南农业大学自然资源与环境学院

【摘要】 随着智能化、网络化传感器技术的日益成熟,无线传感网络在人类生活以及商业等领域有着广泛的应用,无线传感器网络节点通常只携带有限的资源,容易出现因资源不足而导致的故障,对WSN节点进行准确、及时的故障诊断,能够保障获得信息可靠性,从而提高WSN可维护性并且延长WSN的使用寿命。针对该问题,提出一种使用核偏最小二乘法来预测故障原因的方法,该方法克服了传统线性回归方法的缺陷,在高维的非线性空间对数据进行分析,同时,该方法也吸收了典型相关分析和主成分分析方法的特点,为分析提供了更加深入、丰富的内容,实验结果表明,提出的方法能够有效预测到故障原因。

【Abstract】 With the development of intelligent and networked sensor technology,wireless sensor networks were widely used in human life and commercial fields,because wireless sensor network nodes usually only carry limited resources,it is prone to failures due to insufficient resources,the accurate and timely fault diagnosis of WSN nodes can ensure the reliability of information,thus improving the maintainability of WSN and prolonging the service life of WSN.A method of using kernel partial least squares has been proposed to predict the fault reasons,the method overcomes the defects of traditional linear regression method and the nonlinear high dimensional space for data analysis.Through many experiments,the method can absorb the characteristics of canonical correlation analysis and principal component analysis method,provide a more thorough and rich content analysi,that the reason of the fault can be predicted effectively.

【基金】 国家自然科学基金资助项目(No.61672123);国家自然科学重点基金资助项目(No.U1301253);广东省重大科技计划基金资助项目(No.2015B010110006);中央高校基本科研业务基金资助项目(No.DUT2017TB02)~~
  • 【文献出处】 通信学报 ,Journal on Communications , 编辑部邮箱 ,2017年S2期
  • 【分类号】TN929.5;TP212.9;TP391.44
  • 【被引频次】10
  • 【下载频次】291
节点文献中: 

本文链接的文献网络图示:

本文的引文网络