节点文献

基于熵权灰色关联模型的重大突发舆情意见领袖识别研究

Identifying Opinion Leaders in Major Sudden Public Opinion Spread Based on Entropy-weighted Grey Correlation Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 朱志国张翠丁学君苗蕊

【Author】 Zhu Zhiguo;Zhang Cui;Ding Xuejun;Miao Rui;School of Management Science and Engineering, Dongbei University of Finance and Economics;Faculty of Management and Economics, Dalian University of Technology;

【机构】 东北财经大学管理科学与工程学院大连理工大学管理与经济学部

【摘要】 在线社会化媒体中意见领袖的准确测度与识别,对于重大突发舆情的情报研判、引导干预与妥善处置具有重要的研究意义。为此,首先从用户的静态网络结构特征与动态信息交互两方面入手,选择7项测度指标,基于熵权灰色关联方法,建立综合测度指标体系中的关联系数、指标权重以及加权关联度的计算模型。接下来,爬取天涯社区国际观察板块中,有关"522新疆暴恐事件"话题讨论中的用户关系与交互数据,对提出的意见领袖测度计算模型进行全面的实验分析。最终得出结论,与单一考虑某个测度指标的方法相比,提出的综合意见领袖测度模型能够更加全面、准确地识别出在线社会化媒体中的高影响力用户群体。研究成果将为我国在重大突发舆情监控、应对处置等方面提供有力的方法支持。

【Abstract】 It has been an important research issue for information analysis, government intervention, and proper disposal during major sudden public opinion spreads to accurately measure and identify opinion leaders on online social networks. Seven metrics for identifying opinion leaders are selected from two aspects of user’s static network structure characteristics and dynamic information interactions. Subsequently, based on Grey relational analysis and entropy value method, the computational model of correlation coefficient, metric weight, and weighted correlation degree in the measurement system is constructed. Finally,this paper fetches the data of users’ relationship and interactions in the topic discussions about "522 incident of violence and terrorism in Xinjiang" in the international review forum of Tianya and subsequently conducts elaborate experiments to verify the proposed computational model for discovering opinion leaders. In summary,compared with the other methods with a single metric,the proposed integrated model can more comprehensively and accurately identify opinion leaders on online social network platforms.This achievement can provide powerful methodological support to our country to monitor and handle major sudden public opinions.

【基金】 国家自然科学基金面上项目(多维兴趣图谱建模下的社会化营销精准“推送-扩散”研究:兴趣表征、用户聚合与匹配扩散,No.71672023);国家自然科学基金青年项目(社会化媒体中突发公共卫生事件网络舆情的传播演化机制及干预策略研究,No.71503033);教育部人文社会科学研究规划项目(社会化营销中的精准“推送-扩散”研究:基于多维兴趣图谱建模,No.16YJAZH083)
  • 【文献出处】 情报学报 ,Journal of the China Society for Scientific and Technical Information , 编辑部邮箱 ,2017年07期
  • 【分类号】G350
  • 【被引频次】28
  • 【下载频次】857
节点文献中: 

本文链接的文献网络图示:

本文的引文网络