节点文献

基于高斯过程回归的动车组气动性能预测研究

Aerodynamic Performance Forecasting of High-Speed Multiple Unit Based on Gaussian Process Regression

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 武福杨博李忠学冯敏杨喜娟

【Author】 WU Fu;YANG Bo;LI Zhong-xue;FENG Min;YANG Xi-juan;School of Mechatronic Engineering,Lanzhou Jiaotong University;Motor Vehicle Application of Jinan Railway Bureau;School of Electronic and Information Engineering,Lanzhou Jiaotong University;

【机构】 兰州交通大学机电工程学院济南铁路局济南动车所兰州交通大学电子与信息工程学院

【摘要】 动车组外形设计后需要进行气动性能分析,以验证模型是否符合气动性能要求.针对传统试车实验和CFD方法成本高、用时长的缺点,提出了一种基于高斯过程回归的动车组气动性能预测模型.选取不同动车组的实体模型,利用STAM-CCM+仿真软件分别得到各模型的气动阻力模拟值,以此作为训练样本集合,然后采用高斯过程回归对训练样本进行学习,探寻动车外形与气动阻力关系,并预测明线动车组气动阻力,最后通过预测残差拟合验证了高斯过程回归预测模型的合理性和准确性.

【Abstract】 Aerodynamic performance analysis is needed to verify whether the model meets the aerodynamic performance requirements after the design of high-speed multiple unit.Aiming at the shortcomings of the traditional test experiment and CFD method,Gaussian process regression model is introduced into aerodynamic performance evaluation of high-speed multiple unit model.Different high-speed multiple model schemes were chosen,and the aerodynamic drag simulation values of each model were obtained by using STAM-CCM+simulation software as the training sample set,then Gaussian process regression was used to study the training samples so as to explore the relationship between the shape of motor vehicle and aerodynamic drag,and to predict the aerodynamic resistance of high-speed multiple unit.Finally,the rationality and accuracy of Gaussian process regression evaluation model were verified by the prediction of residual fitting.

【基金】 兰州交通大学青年基金(2015007)
  • 【文献出处】 兰州交通大学学报 ,Journal of Lanzhou Jiaotong University , 编辑部邮箱 ,2017年06期
  • 【分类号】U266
  • 【被引频次】1
  • 【下载频次】114
节点文献中: 

本文链接的文献网络图示:

本文的引文网络