节点文献

构建中值图以快速生成高质量的三维模型骨架

Medial Graphs for Fast Extraction of High-Quality Curve-Skeletons

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李雷徐盼盼王文成

【Author】 Li Lei;Xu Panpan;Wang Wencheng;State Key Laboratory of Computer Science,Institute of Software,Chinese Academy of Sciences;University of Chinese Academy of Sciences;

【机构】 中国科学院软件研究所计算机科学国家重点实验室中国科学院大学

【摘要】 针对已有的曲线骨架提取方法获得的曲线骨架不太简洁,且关节点过多,难以有效反映模型拓扑结构的问题,提出一种曲线骨架提取方法.首先运用经典的集合覆盖问题模型对中值面进行优化处理,减少模型细节的干扰,形成中值图,以更简洁且规整地表达模型;然后以收缩的方式根据中值图生成曲线骨架,得到有效地反映模型拓扑结构的简洁的骨架形态.由于中值图的数据规模远小于中值面,文中方法的计算效率很高.实验结果表明,相比于已有方法,该方法提高了曲线骨架的生成质量,且计算速度有明显提高,甚至可提高3个数量级.

【Abstract】 For curve-skeleton extraction, many methods firstly extract medial surfaces of 3D shapes, and then generate curve-skeletons from medial surfaces. Due to the details of shapes, medial surfaces are rugged in general. Hence, the obtained curve-skeletons are often rough, very possibly containing too many junction points than required, failing to represent the topology of 3D shapes concisely. In this paper, we present a novel method that is also based on medial surfaces. It employs the classical(set cover problem) SCP model to optimize the medial surfaces for reducing the interference from shape details, generating a compact and neat representation for a 3D shape, called a medial graph. Afterwards, medial graphs are used instead of medial surfaces for extracting curve skeletons, according to the contraction strategy in our current implementation. As a result, the obtained curve-skeleton is clean and compact, with suitable junction points to well represent the topological structures of 3D shapes. Another benefit is that our method can run much faster, because the medial graphs are very small in size. Experimental results show that our method can improve skeleton quality, compared to existing methods, and run much faster than them, even by three orders of magnitude.

【基金】 国家自然科学基金(78097316);中国科学院知识创新工程领域前沿项目
  • 【文献出处】 计算机辅助设计与图形学学报 ,Journal of Computer-Aided Design & Computer Graphics , 编辑部邮箱 ,2017年07期
  • 【分类号】TP391.41
  • 【被引频次】4
  • 【下载频次】101
节点文献中: 

本文链接的文献网络图示:

本文的引文网络