节点文献

基于图像空间金字塔SURF-BoW的步态识别

Gait Recognition Based on SURF-BoW of Image Space Pyramid

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 史东承贾令尧梁超王新颖

【Author】 SHI Dongcheng;JIA Lingyao;LIANG Chao;WANG Xinying;Image Processing and Video Communication Laboratory,Changchun University of Technology;

【机构】 长春工业大学图像处理与视频通信实验室

【摘要】 在步态识别中,衣着的变化易降低步态识别效果。为此,提出一种保留步态特征空间分布信息的步态识别方法。提取步态能量图像各级空间金字塔网格的加速鲁棒特征,采用偏最小二乘空间金字塔表示方法对各自级层的特征加权后进行聚类,构建词袋模型,用该模型统计直方图表征步态特征。使用直方图相交核支持向量机在CASIA步态数据库进行实验,结果表明,该方法具有较好的识别效果,平均识别率优于四元数小波变换、掩模能量图、局部二值模式和局部纹理分析步态识别方法。

【Abstract】 In gait recognition,the performance is easily weakened by the change of clothing. In this respect,a gait recognition method is proposed by preserving the space distribution information of gait features. The Speeded-Up Robust Features( SURF) are extracted from each mesh at all levels of image spatial pyramid of gait energy image. The Partial least squares Spatial Pyramid Representation( PlsSPR) method is used to represent the weight of characteristics of each level to construct Bag of Words( BoW) and the gait feature is expressed by its statistic histogram. The Histogram Intersection Kernel Support Vector Machine( HIKSVM) is tested on CASIA gait database and the results show that the method presented has better recognition performance and the average recognition rate is significantly higher than gait recognition methods through quaternion wavelet transform,mask energy image,local binary patterns and local texture analysis.

【基金】 国家自然科学基金(61303132);吉林省教育厅“十三五”科学研究规划项目(吉教科合字[2016]第349号)
  • 【文献出处】 计算机工程 ,Computer Engineering , 编辑部邮箱 ,2017年09期
  • 【分类号】TP391.41
  • 【被引频次】7
  • 【下载频次】134
节点文献中: 

本文链接的文献网络图示:

本文的引文网络