节点文献

基于动态集成LSSVR的超短期风电功率预测

Ultra-short-term Wind Power Prediction Based on Dynamical Ensemble Least Square Support Vector Regression

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘荣胜彭敏放张海燕万勋沈美娥

【Author】 LIU Rongsheng;PENG Minfang;ZHANG Haiyan;WAN Xun;SHEN Meie;College of Electrical and Information Engineering,Hunan University;State Grid Hunan Electric Power Company Electric Power Research Institute;Computer School Beijing Information Science & Technology University;

【机构】 湖南大学电气与信息工程学院国网湖南省电力公司电力科学研究院北京信息科技大学计算机学院

【摘要】 针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acquisition,SCADA)与数值天气预报(Numerical Weather Prediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显.

【Abstract】 For the limitation of least square support vector regression(LSSVR)in modeling the time varying feature of wind power,an ultra-short-term wind power prediction(USTWPP)model based on dynamical ensemble LSSVR was proposed.Firstly,the off-line LSSVR model library was created by making use of the historical data which were obtained from Numerical Weather Prediction(NWP)and supervisory control and data acquisition(SCADA)system of wind farm.Then,the candidate members of ensemble LSSVR were selected from off-line LSSVR model library dynamically according to the similarity between the NWP of forecasting period and the NWP of training period.The ensemble members were decided by considering the accuracy and diversity.Finally,the weights of ensemble LSSVR members were assigned according to the similarity between the NWP of training and NWP of prediction period.The validity of the dynamical ensemble LSSVR based predictor was verified by predicting the wind power of a wind farm in Hunan Province.Compared with persistence method(PM),auto regressive integrated moving average(AGIMA),LSSVR,constant weight ensemble LSSVR,and ensemble artificial neural networks(ANN),the dynamical ensemble LSSVR is more accurate,especially when the weather changes severely.

【基金】 国家自然科学基金资助项目(61472128;61173108);National Natural Science Foundation of China(61472128;61173108)
  • 【文献出处】 湖南大学学报(自然科学版) ,Journal of Hunan University(Natural Sciences) , 编辑部邮箱 ,2017年04期
  • 【分类号】TM614
  • 【被引频次】7
  • 【下载频次】202
节点文献中: 

本文链接的文献网络图示:

本文的引文网络