节点文献
改进的重心插值配点法求解一类奇异摄动延迟微分方程
Modified barycentric interpolation collocation method for solving a class of singularly perturbed delay differential equations
【摘要】 传统重心插值配点法不能求解奇异摄动延迟微分方程。将重心插值配点法与泰勒公式结合,把奇异摄动延迟问题近似转化为系数依赖于延迟量的一般奇异摄动问题,给出改进的重心插值配点法,并给出重心插值配点法的收敛性分析。数值算例表明,本方法是一种有效的、高精度的数值算法。
【Abstract】 Traditional barycentric interpolation collocation method can not solve singular perturbed delay differential equations. By combining barycentric interpolation collocation method and Taylor’s series,the singular perturbed delay differential equations are transformed into singular perturbed differential equations which the coefficient only depends upon delay. A modified barycentric interpolation collocation method is given,and the convergence analysis of barycentric interpolation collocation method is obtained.Numerical results show that this method is an effective and high-precision numerical method.
【Key words】 singular perturbed; delay; Taylor’s series; barycentric interpolation;
- 【文献出处】 黑龙江大学自然科学学报 ,Journal of Natural Science of Heilongjiang University , 编辑部邮箱 ,2017年04期
- 【分类号】O241.8
- 【被引频次】3
- 【下载频次】103