节点文献

具有Logistic增长和饱和CTL免疫反应的时滞HIV模型的稳定

Stability analysis of delayed HIV model with Logistic growth and saturated CTL-immune response

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 吕英胡志兴廖福成

【Author】 Lü Ying;HU Zhixing;LIAO Fucheng;School of Mathematics and Physics,University of Science and Technology Beijing;

【机构】 北京科技大学数理学院

【摘要】 研究具有Logistic增长和饱和CTL免疫反应及其免疫时滞的HIV病毒模型。讨论在不同情况下无病平衡点E0、无免疫感染平衡点E1、免疫感染平衡点E2的存在条件,通过分析特征方程,建立三个平衡点的局部渐近稳定性;讨论免疫感染平衡点E2附近存在Hopf分支的充分条件,通过规范型方法及中心流定理,分析Hopf分支的方向和稳定性。数值模拟验证了主要结论的正确性。

【Abstract】 Consider a delayed HIV model with Logistic growth and saturated CTL-immune response. The existence conditions of the infection-free equilibrium E0,the immune-exhausted equilibrium E1 and the infected equilibrium with immunity E2 are shown. The locally asymptotically stability conditions of the trivial equilibrium are established by analyzing the characteristic equations. The sufficient condition under which there appears Hopf bifurcations near the infected equilibrium with immunity E2. The direction and stability of bifurcation periodic solutions are also studied by the norm-form method and central flow theorem. Finally,numerical simulations are carried out to illustrate the mathematical conclusions.

【基金】 国家自然科学基金资助项目(61174209;11471034)
  • 【文献出处】 黑龙江大学自然科学学报 ,Journal of Natural Science of Heilongjiang University , 编辑部邮箱 ,2017年04期
  • 【分类号】O175
  • 【下载频次】126
节点文献中: 

本文链接的文献网络图示:

本文的引文网络