节点文献

一种邻域重心反向学习的粒子群优化算法

Neighborhood Centroid Opposition-Based Particle Swarm Optimization

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 周凌云丁立新彭虎强小利

【Author】 ZHOU Ling-yun;DING Li-xin;PENG Hu;QIANG Xiao-li;State Key Lab of Software Engineering,Wuhan University,Computer School,Wuhan University;College of Computer Science,South-Central University for Nationalities;School of Information Science and Technology,Jiujiang University;

【机构】 武汉大学软件工程国家重点实验室武汉大学计算机学院中南民族大学计算机科学学院九江学院信息科学与技术学院

【摘要】 粒子群优化算法使用反向学习技术可以提高性能.然而,现有的反向学习粒子群优化算法仅采用粒子最大最小边界计算反向解,没有充分利用群体搜索经验.针对此问题,提出了一种邻域重心反向学习策略,使用邻域重心作为参考点计算反向解,充分吸收群体搜索经验的同时保持种群多样性;采用收缩因子拓展反向解搜索范围,增加找到更高质量解的机率.在典型的基准测试函数、CEC’13测试函数和一个实际工程优化问题上进行验证,实验结果说明了邻域重心反向学习策略的有效性和本文算法的竞争力.

【Abstract】 Using opposition-based learning can improve the performance of particle swarm optimization(PSO) algorithm.However,the current opposition-based learning particle swarm optimization algorithms calculate the opposite solution by using coordinates of the candidate solution,the maximum and the minimum of a population,without making full use of the search experience of the population.A neighborhood centroid opposition-based learning strategy is proposed to improve this issue.First,the neighborhood centroid is used as reference point for the generation of the opposite particle,absorbing the population search experience and maintaining diversity.Second,contraction factor is used to expand the reverse search space,increasing the probability of finding a better solution.Experiments are conducted on typical benchmark functions,CEC’13 test functions and also on a practical engineering optimization problem.The results verify the effectiveness of the neighborhood centroid opposition-based learning and the competitiveness of the NCOPSO.

【基金】 国家自然科学基金(No.61379059)
  • 【文献出处】 电子学报 ,Acta Electronica Sinica , 编辑部邮箱 ,2017年11期
  • 【分类号】TP18
  • 【被引频次】44
  • 【下载频次】556
节点文献中: 

本文链接的文献网络图示:

本文的引文网络