节点文献

一种基于原型学习的自适应概念漂移分类方法

A Prototype-Based Adaptive Concept Drift Classification Method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 苏静裘晓峰李书芳刘道伟张春红

【Author】 SU Jing;QIU Xiao-feng;LI Shu-fang;LIU Dao-wei;ZHANG Chun-hong;Beijing Key Laboratory of Network System Architecture and Convergence,Beijing University of Posts and Telecommunications;China Electric Power Research Institute;

【机构】 北京邮电大学网络体系构建与融合北京市重点实验室中国电力科学研究院

【摘要】 为了更准确快速地处理或适应概念漂移,提出了基于原型学习的数据流分类算法,基于发掘并优化现有方法存在的问题,提出了新的方法模型Sync Prototype,在预测方法、原型判定与更新方法等处理概念漂移问题的关键部分做出了新的尝试与优化.实验结果证明,相较于现有方法,Sync Prototype模型在分类性能、概念漂移的响应速度以及时间性能等方面都有明显提高,能够更加有效处理并适应数据流概念漂移问题.

【Abstract】 As a frequent problem that needs to be mainly dealt with in supervised learning scenario of streaming data,the concept drift,primarily,occurs when the data distribution or the target variable changes over time. As typical data streams,the research method which real-time solves or adapts to the concept drift of data streams can provide strong support for grid security dispatch and stable control of realtime decision-making. For accurate and quick dealing with or adapting to concept drift,a prototype-based learning algorithm of data streams classification is discussed. Based on improving the problems which have been explored in existing algorithm,a new algorithm Sync Prototype was proposed,which makes new optimization in terms of methods of classification method,prototype construction and updating. Experiment shows that Sync Prototype can outperforms the existing algorithm in terms of classification performance,time performance and response rate.

【关键词】 数据流概念漂移分类
【Key words】 data streamsconcept driftclassification
【基金】 国家电网公司科技项目(XT71-15-056)
  • 【文献出处】 北京邮电大学学报 ,Journal of Beijing University of Posts and Telecommunications , 编辑部邮箱 ,2017年03期
  • 【分类号】TP311.13
  • 【被引频次】1
  • 【下载频次】138
节点文献中: 

本文链接的文献网络图示:

本文的引文网络