节点文献

基于粒子群优化BP神经网络的医患关系风险预警模型

Risk Pre-warning Model of Doctor-Patient Relationship Based on Particle Swarm Optimization BP Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王宗杰邢明峰王洪泊

【Author】 WANG Zongjie;XING Mingfeng;WANG Hongbo;School of Computer & Communication Engineering,University of Science & Technology Beijing;

【机构】 北京科技大学计算机与通信工程学院

【摘要】 为了提高医患关系风险预警的准确度,提出一种基于粒子群优化反向传播(back propagation,BP)神经网络的医患关系风险预警模型.首先采用通过粒子群算法优化BP神经网络初始权值和阈值的方法来提高BP神经网络的预测准确度;通过对模型优化前后的对比分析,得出优化后模型预测误差更小的实验结果.仿真结果表明:此方法建立的医患关系风险预警模型收敛速度更快,预测精度更高.

【Abstract】 In this paper,an optimized modeling method based on particle swarm optimization( PSO)toward back propagation( BP) neural network was proposed to raise the prediction accuracy for the doctor-patients risk pre-warning case. The PSO method was applied to optimize the initial weights and biases of the conventional BP neural network to raise the prediction accuracy. By contrast and analysis of the results,the optimized method achieved a more effective prediction with much lower error. Therefore,the proposed PSO-BP neural network provides a more promising prediction method with faster convergence and higher accuracy.

【基金】 国家自然科学基金资助项目(61572074)
  • 【文献出处】 北京工业大学学报 ,Journal of Beijing University of Technology , 编辑部邮箱 ,2017年01期
  • 【分类号】R197.32;TP18
  • 【被引频次】24
  • 【下载频次】428
节点文献中: 

本文链接的文献网络图示:

本文的引文网络