节点文献

基于经验模式分解和自适应神经模糊推理的风速短期智能预测混合方法

Short-term wind speed intelligent prediction method based on empirical mode decomposition and adaptive neural fuzzy inference system

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘辉张雷田红旗梁习锋李燕飞

【Author】 LIU Hui;ZHANG Lei;TIAN Hongqi;LIANG Xifeng;LI Yanfei;Key Laboratory of Traffic Safety on Track of Ministry of Education,School of Traffic & Transportation Engineering, Central South University;Institute of Automation, Faculty of Informatics and Electrical Engineering,University of Rostock;

【机构】 中南大学交通运输工程学院轨道交通安全教育部重点实验室德国Rostock大学信息与电子工程学院

【摘要】 为实现风速的超前多步高精度预测,提出一种基于经验模式分解与自适应神经模糊推理的混合方法。该方法利用经验模式分解法对铁路风速进行多层分解计算以降低风速的强随机性,对分解后的各层风速数据分别建立自适应神经模糊推理预测模型并完成预测计算,最终加权各层预测值获得原实测数据的对应步数的预测结果。运用所提出的方法对青藏铁路某监控点的风速进行预测。研究结果表明:所提出的混合方法有效融合了经验模式分解法的信号细分性能和自适应神经模糊推理法的非线性追踪能力,混合模型的超前1步、2步、3步预测的平均相对误差分别为6.24%,11.11%和14.30%,体现出良好的非平稳信号预测性能。

【Abstract】 To get high-precision forecasting results, a hybrid method was proposed by adopting the empirical mode decomposition and the adaptive neural fuzzy inference system. The procedures of the proposed method are as follows. Firstly, use the empirical mode decomposition to decompose the non-stationary wind speed series into a group of sub wind speed layers. Secondly, utilize the adaptive neural fuzzy inference system to build multi-step forecasting models for all the decomposed wind speed layers. Thirdly, sum up the multi-step forecasting results of the decomposed layers to get the final predictions for the original wind speed signals. Experiment was made using the wind speed data sampled from a monitoring wind station along the Qinghai—Tibet railway. The results show that the proposed method combines the decomposing performance of the empirical mode decomposition and the nonlinear performance of the adaptive neural fuzzy inference system effectively. The mean percentage errors of the one-three step ahead forecasting results are 6.24%, 11.11% and 14.30%,respectively.Those errors indicate that the proposed method has satisfactory forecasting performance.

【基金】 国家自然科学基金资助项目(51308553);国家高铁联合基金资助项目(U1134203,U1334205);湖南省教育厅科学研究项目(省优秀博士学位论文奖励专项);中南大学升华育英人才计划项目(502034011);中南大学研究生自主探索创新项目基金资助项目(2013zzts041)~~
  • 【文献出处】 中南大学学报(自然科学版) ,Journal of Central South University(Science and Technology) , 编辑部邮箱 ,2016年02期
  • 【分类号】U298
  • 【被引频次】8
  • 【下载频次】383
节点文献中: 

本文链接的文献网络图示:

本文的引文网络