节点文献
带积分边界条件的二阶脉冲微分方程的3个正解及其应用
Triplepositive solutions of second-order impulsive differential equations with integral boundary conditions and its applications
【摘要】 为了研究带积分边界条件的二阶脉冲微分方程边值问题3个正解的存在性,首先利用变换技术,把二阶脉冲微分方程转化为没有脉冲的二阶微分方程。然后应用Leggett-Williams不动点定理给出了带积分边界条件的二阶脉冲微分方程存在3个正解的充分条件。最后,通过例子验证了主要结论的正确性。
【Abstract】 To investigate the existence of three positive solutions of second-order impulsive differential equations with integral boundary conditions.Firstly,by means of the transformation,we convert a second-order impulsive differential equation into a second-order differential equation without impulse.Then by using Leggett-Williams’ fixed point theorem,we establish sufficient conditions for the existence of three positive solutions for the second-order impulsive differential equations with integral boundary conditions.Finally,an example is included to illustrate the main results.
【Key words】 triple positive solutions; impulsive differential equations; integral boundary conditions; transformation; Leggett-Williams’ fixed point theorem;
- 【文献出处】 中国科技论文 ,China Sciencepaper , 编辑部邮箱 ,2016年17期
- 【分类号】O175.8
- 【被引频次】2
- 【下载频次】70