节点文献

基于EAKI辨识策略的机床振动试验研究

Experimental Study on Machine Tool Variation Based on EAKI Method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄子凌刘成颖李铁民

【Author】 HUANG Zi-ling;LIU Cheng-ying;LI Tie-min;Department of Mechanical Engineering,Tsinghua University;Beijing Key Lab of Precision , Ultra-precision Manufacturing Equipment and Control;

【机构】 清华大学机械工程系精密超精密制造装备及控制北京市重点实验室

【摘要】 机床振动是制约机床加工精度及效率的核心因素,文章基于EAKI策略在多台机床上开展振动试验研究。针对强迫振动及自激振动信号辨识问题,首先提出EAKI振动信号辨识策略;为有效构建振动信号备案知识库,提出信号特征分量提取算法;最后在国内外多台数控机床上进行了全转速状态下的振动试验研究。试验结果有效地验证了EAKI策略的可行性与实用性,同时为机床性能评估及设计完善提供了良好借鉴。

【Abstract】 Vibration is the key factor that constrains high quality and efficiency of a machine tool. The paper studied a series of experiments on different machine tools based on EAKI method. In order to achieve signal identification between chatter and forced vibration,we proposed EAKI method which combined theoretical analysis,experimental study and database technology. Then we proposed a feature extraction method which can be applied to record useful vibration information in order to construct vibration feature database. At last we conducted a series of vibration experiments on machine tools made in China and abroad. The experimental results verified the feasibility of EAKI strategy effectively and practically,at the same time it provided a good reference for the performance evaluation and redesign of machine tool.

【基金】 国家04科技重大专项课题(2013ZX04001-021,2014ZX04001051)
  • 【文献出处】 组合机床与自动化加工技术 ,Modular Machine Tool & Automatic Manufacturing Technique , 编辑部邮箱 ,2016年02期
  • 【分类号】TG501
  • 【被引频次】3
  • 【下载频次】77
节点文献中: 

本文链接的文献网络图示:

本文的引文网络