节点文献
商品检索中的多任务识别与分析
Multi-task Session Identification and Analysis in Product Search
【摘要】 【目的】对商品检索中的购物任务进行识别,并对多任务会话行为特征进行分析。【方法】利用淘宝商品分类体系以及自建的商品词表,根据商品检索的检索式进行购物任务识别,数据集为2 754个用户的19 704个检索会话。【结果】影响每个购物任务所用检索式数的因素包括商品分面、数量的多少以及描述难易程度;有主要任务和次要任务之分的多任务会话中,任务之间的关系更为紧密。【局限】购物任务识别方法有待完善,只以检索式作为研究对象无法全面反映用户行为特征。【结论】本研究可以帮助理解购物中的商品检索行为,并为设计更好的商品推荐算法、预测用户购物过程、行为等提供依据。
【Abstract】 [Objective] This research aims to identify shopping tasks from product search, and then analyze the characteristic of multi-task sessions. [Methods] Using the product classification of Taobao, and a list of manually selected product terms, we identified online shopping tasks based on query terms from 19 704 search sessions by 2 754 users. [Results] First, factors influence the number of queries per shopping task: product characteristics, the amount of available products, and the difficulty in describing product category with query terms. Second, we found that in sessions with a major task, the relationship among the shopping tasks is closer. [Limitations] The task identification method based on query terms cannot completely describe the complex consumer shopping behaviors. [Conclusions] This study provides an exploratory understanding of the relationships among various shopping tasks, and may be used to improve product recommendation algorithm, as well as predict shopping behaviors.
【Key words】 Product search; Shopping task identification; Shopping task analysis; Multi-task session;
- 【文献出处】 现代图书情报技术 ,New Technology of Library and Information Service , 编辑部邮箱 ,2016年03期
- 【分类号】G252.7
- 【被引频次】4
- 【下载频次】265